Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
12 |
|
dvfsumrlim.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) |
13 |
|
dvfsumrlim.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) |
14 |
|
dvfsumrlim.k |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
15 |
|
dvfsumrlim3.1 |
⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐸 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 13
|
dvfsumrlimf |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dvfsumrlim |
⊢ ( 𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑀 ∈ ℤ ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝐷 ∈ ℝ ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑇 ∈ ℝ ) |
22 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
23 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
24 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
26 |
12
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) |
27 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝑋 ∈ 𝑆 ) |
29 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) → 𝐷 ≤ 𝑋 ) |
30 |
1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29
|
dvfsumrlim2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
31 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝑋 ∈ 𝑆 ) |
32 |
|
nfcvd |
⊢ ( 𝑋 ∈ 𝑆 → Ⅎ 𝑥 𝐸 ) |
33 |
32 15
|
csbiegf |
⊢ ( 𝑋 ∈ 𝑆 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = 𝐸 ) |
34 |
31 33
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = 𝐸 ) |
35 |
30 34
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐺 ⇝𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) |
36 |
35
|
exp42 |
⊢ ( 𝜑 → ( 𝐷 ≤ 𝑋 → ( 𝑋 ∈ 𝑆 → ( 𝐺 ⇝𝑟 𝐿 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) ) |
37 |
36
|
com24 |
⊢ ( 𝜑 → ( 𝐺 ⇝𝑟 𝐿 → ( 𝑋 ∈ 𝑆 → ( 𝐷 ≤ 𝑋 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) ) |
38 |
37
|
3impd |
⊢ ( 𝜑 → ( ( 𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) |
39 |
16 17 38
|
3jca |
⊢ ( 𝜑 → ( 𝐺 : 𝑆 ⟶ ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ( ( 𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) |