Metamath Proof Explorer


Theorem dvfsumrlim3

Description: Conjoin the statements of dvfsumrlim and dvfsumrlim2 . (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s 𝑆 = ( 𝑇 (,) +∞ )
dvfsum.z 𝑍 = ( ℤ𝑀 )
dvfsum.m ( 𝜑𝑀 ∈ ℤ )
dvfsum.d ( 𝜑𝐷 ∈ ℝ )
dvfsum.md ( 𝜑𝑀 ≤ ( 𝐷 + 1 ) )
dvfsum.t ( 𝜑𝑇 ∈ ℝ )
dvfsum.a ( ( 𝜑𝑥𝑆 ) → 𝐴 ∈ ℝ )
dvfsum.b1 ( ( 𝜑𝑥𝑆 ) → 𝐵𝑉 )
dvfsum.b2 ( ( 𝜑𝑥𝑍 ) → 𝐵 ∈ ℝ )
dvfsum.b3 ( 𝜑 → ( ℝ D ( 𝑥𝑆𝐴 ) ) = ( 𝑥𝑆𝐵 ) )
dvfsum.c ( 𝑥 = 𝑘𝐵 = 𝐶 )
dvfsumrlim.l ( ( 𝜑 ∧ ( 𝑥𝑆𝑘𝑆 ) ∧ ( 𝐷𝑥𝑥𝑘 ) ) → 𝐶𝐵 )
dvfsumrlim.g 𝐺 = ( 𝑥𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶𝐴 ) )
dvfsumrlim.k ( 𝜑 → ( 𝑥𝑆𝐵 ) ⇝𝑟 0 )
dvfsumrlim3.1 ( 𝑥 = 𝑋𝐵 = 𝐸 )
Assertion dvfsumrlim3 ( 𝜑 → ( 𝐺 : 𝑆 ⟶ ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ( ( 𝐺𝑟 𝐿𝑋𝑆𝐷𝑋 ) → ( abs ‘ ( ( 𝐺𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 dvfsum.s 𝑆 = ( 𝑇 (,) +∞ )
2 dvfsum.z 𝑍 = ( ℤ𝑀 )
3 dvfsum.m ( 𝜑𝑀 ∈ ℤ )
4 dvfsum.d ( 𝜑𝐷 ∈ ℝ )
5 dvfsum.md ( 𝜑𝑀 ≤ ( 𝐷 + 1 ) )
6 dvfsum.t ( 𝜑𝑇 ∈ ℝ )
7 dvfsum.a ( ( 𝜑𝑥𝑆 ) → 𝐴 ∈ ℝ )
8 dvfsum.b1 ( ( 𝜑𝑥𝑆 ) → 𝐵𝑉 )
9 dvfsum.b2 ( ( 𝜑𝑥𝑍 ) → 𝐵 ∈ ℝ )
10 dvfsum.b3 ( 𝜑 → ( ℝ D ( 𝑥𝑆𝐴 ) ) = ( 𝑥𝑆𝐵 ) )
11 dvfsum.c ( 𝑥 = 𝑘𝐵 = 𝐶 )
12 dvfsumrlim.l ( ( 𝜑 ∧ ( 𝑥𝑆𝑘𝑆 ) ∧ ( 𝐷𝑥𝑥𝑘 ) ) → 𝐶𝐵 )
13 dvfsumrlim.g 𝐺 = ( 𝑥𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶𝐴 ) )
14 dvfsumrlim.k ( 𝜑 → ( 𝑥𝑆𝐵 ) ⇝𝑟 0 )
15 dvfsumrlim3.1 ( 𝑥 = 𝑋𝐵 = 𝐸 )
16 1 2 3 4 5 6 7 8 9 10 11 13 dvfsumrlimf ( 𝜑𝐺 : 𝑆 ⟶ ℝ )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dvfsumrlim ( 𝜑𝐺 ∈ dom ⇝𝑟 )
18 3 adantr ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → 𝑀 ∈ ℤ )
19 4 adantr ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → 𝐷 ∈ ℝ )
20 5 adantr ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → 𝑀 ≤ ( 𝐷 + 1 ) )
21 6 adantr ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → 𝑇 ∈ ℝ )
22 7 adantlr ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ 𝑥𝑆 ) → 𝐴 ∈ ℝ )
23 8 adantlr ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ 𝑥𝑆 ) → 𝐵𝑉 )
24 9 adantlr ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ 𝑥𝑍 ) → 𝐵 ∈ ℝ )
25 10 adantr ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → ( ℝ D ( 𝑥𝑆𝐴 ) ) = ( 𝑥𝑆𝐵 ) )
26 12 3adant1r ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ ( 𝑥𝑆𝑘𝑆 ) ∧ ( 𝐷𝑥𝑥𝑘 ) ) → 𝐶𝐵 )
27 14 adantr ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → ( 𝑥𝑆𝐵 ) ⇝𝑟 0 )
28 simprr ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → 𝑋𝑆 )
29 simprl ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) → 𝐷𝑋 )
30 1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29 dvfsumrlim2 ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ 𝐺𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺𝑋 ) − 𝐿 ) ) ≤ 𝑋 / 𝑥 𝐵 )
31 28 adantr ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ 𝐺𝑟 𝐿 ) → 𝑋𝑆 )
32 nfcvd ( 𝑋𝑆 𝑥 𝐸 )
33 32 15 csbiegf ( 𝑋𝑆 𝑋 / 𝑥 𝐵 = 𝐸 )
34 31 33 syl ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ 𝐺𝑟 𝐿 ) → 𝑋 / 𝑥 𝐵 = 𝐸 )
35 30 34 breqtrd ( ( ( 𝜑 ∧ ( 𝐷𝑋𝑋𝑆 ) ) ∧ 𝐺𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺𝑋 ) − 𝐿 ) ) ≤ 𝐸 )
36 35 exp42 ( 𝜑 → ( 𝐷𝑋 → ( 𝑋𝑆 → ( 𝐺𝑟 𝐿 → ( abs ‘ ( ( 𝐺𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) )
37 36 com24 ( 𝜑 → ( 𝐺𝑟 𝐿 → ( 𝑋𝑆 → ( 𝐷𝑋 → ( abs ‘ ( ( 𝐺𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) ) )
38 37 3impd ( 𝜑 → ( ( 𝐺𝑟 𝐿𝑋𝑆𝐷𝑋 ) → ( abs ‘ ( ( 𝐺𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) )
39 16 17 38 3jca ( 𝜑 → ( 𝐺 : 𝑆 ⟶ ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ( ( 𝐺𝑟 𝐿𝑋𝑆𝐷𝑋 ) → ( abs ‘ ( ( 𝐺𝑋 ) − 𝐿 ) ) ≤ 𝐸 ) ) )