Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
12 |
|
dvfsumrlim.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) |
13 |
|
dvfsumrlim.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) |
14 |
|
dvfsumrlim.k |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
15 |
|
ioossre |
⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ |
16 |
1 15
|
eqsstri |
⊢ 𝑆 ⊆ ℝ |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ 𝑆 ) |
18 |
16 17
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
19 |
18
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
20 |
18
|
renepnfd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ≠ +∞ ) |
21 |
|
icopnfsup |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ +∞ ) → sup ( ( 𝑥 [,) +∞ ) , ℝ* , < ) = +∞ ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → sup ( ( 𝑥 [,) +∞ ) , ℝ* , < ) = +∞ ) |
23 |
6
|
rexrd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
24 |
17 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ( 𝑇 (,) +∞ ) ) |
25 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑇 ∈ ℝ* ) |
26 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( 𝑥 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑇 < 𝑥 ) ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑇 < 𝑥 ) ) ) |
28 |
24 27
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑇 < 𝑥 ) ) |
29 |
28
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑇 < 𝑥 ) |
30 |
|
df-ioo |
⊢ (,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 < 𝑤 ∧ 𝑤 < 𝑣 ) } ) |
31 |
|
df-ico |
⊢ [,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣 ) } ) |
32 |
|
xrltletr |
⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑇 < 𝑥 ∧ 𝑥 ≤ 𝑧 ) → 𝑇 < 𝑧 ) ) |
33 |
30 31 32
|
ixxss1 |
⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑇 < 𝑥 ) → ( 𝑥 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
34 |
23 29 33
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
35 |
34 1
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 [,) +∞ ) ⊆ 𝑆 ) |
36 |
11
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑆 ↦ 𝐶 ) |
37 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
38 |
36 37
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ 𝑆 ↦ 𝐶 ) ⇝𝑟 0 ) |
39 |
35 38
|
rlimres2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↦ 𝐶 ) ⇝𝑟 0 ) |
40 |
16
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
41 |
40 7 8 10
|
dvmptrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
42 |
41
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
43 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ℂ ) |
44 |
|
rlimconst |
⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 𝐵 ) |
45 |
40 43 44
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 𝐵 ) |
46 |
35 45
|
rlimres2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↦ 𝐵 ) ⇝𝑟 𝐵 ) |
47 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
49 |
35
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝑘 ∈ 𝑆 ) |
50 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
51 |
50
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑆 ) → 𝐶 ∈ ℝ ) |
52 |
48 49 51
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐶 ∈ ℝ ) |
53 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐵 ∈ ℝ ) |
54 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝜑 ) |
55 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝑥 ∈ 𝑆 ) |
56 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐷 ≤ 𝑥 ) |
57 |
|
elicopnf |
⊢ ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘 ) ) ) |
58 |
18 57
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘 ) ) ) |
59 |
58
|
simplbda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝑥 ≤ 𝑘 ) |
60 |
54 55 49 56 59 12
|
syl122anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐶 ≤ 𝐵 ) |
61 |
22 39 46 52 53 60
|
rlimle |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐵 ) |