Step |
Hyp |
Ref |
Expression |
1 |
|
dvval.t |
⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) |
2 |
|
dvval.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
df-dv |
⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
5 |
2
|
oveq1i |
⊢ ( 𝐾 ↾t 𝑠 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) |
6 |
|
simprl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → 𝑠 = 𝑆 ) |
7 |
6
|
oveq2d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝐾 ↾t 𝑠 ) = ( 𝐾 ↾t 𝑆 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝐾 ↾t 𝑠 ) = 𝑇 ) |
9 |
5 8
|
eqtr3id |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) = 𝑇 ) |
10 |
9
|
fveq2d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) = ( int ‘ 𝑇 ) ) |
11 |
|
simprr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) |
12 |
11
|
dmeqd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = dom 𝐹 ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
14 |
13
|
fdmd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → dom 𝐹 = 𝐴 ) |
15 |
12 14
|
eqtrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = 𝐴 ) |
16 |
10 15
|
fveq12d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) = ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ) |
17 |
15
|
difeq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( dom 𝑓 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝑥 } ) ) |
18 |
11
|
fveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
19 |
11
|
fveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
20 |
18 19
|
oveq12d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
22 |
17 21
|
mpteq12dv |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
23 |
22
|
oveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
24 |
23
|
xpeq2d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) = ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
25 |
16 24
|
iuneq12d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) |
27 |
26
|
oveq2d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑠 = 𝑆 ) → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) |
28 |
|
simp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ℂ ) |
29 |
|
cnex |
⊢ ℂ ∈ V |
30 |
29
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ ) |
31 |
28 30
|
sylibr |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ 𝒫 ℂ ) |
32 |
29
|
a1i |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ℂ ∈ V ) |
33 |
|
simp2 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
34 |
|
simp3 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ 𝑆 ) |
35 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
36 |
32 31 33 34 35
|
syl22anc |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
37 |
|
limccl |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ⊆ ℂ |
38 |
|
xpss2 |
⊢ ( ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ⊆ ℂ → ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) ) |
39 |
37 38
|
ax-mp |
⊢ ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) |
40 |
39
|
rgenw |
⊢ ∀ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) |
41 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( { 𝑥 } × ℂ ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ℂ ) ) |
42 |
40 41
|
ax-mp |
⊢ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ℂ ) |
43 |
|
iunxpconst |
⊢ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ℂ ) = ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) |
44 |
42 43
|
sseqtri |
⊢ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) |
45 |
44
|
a1i |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) |
46 |
|
fvex |
⊢ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∈ V |
47 |
46 29
|
xpex |
⊢ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ∈ V |
48 |
47
|
ssex |
⊢ ( ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∈ V ) |
49 |
45 48
|
syl |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∈ V ) |
50 |
4 25 27 31 36 49
|
ovmpodx |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
51 |
50 45
|
eqsstrd |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) |
52 |
50 51
|
jca |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) ) |