Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvgt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvgt0.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvge0.d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( 0 [,) +∞ ) ) |
5 |
|
dvge0.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
6 |
|
dvge0.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) |
7 |
|
dvge0.l |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
8 |
1 2 3 4
|
dvgt0lem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) |
9 |
8
|
exp31 |
⊢ ( 𝜑 → ( ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑋 < 𝑌 → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
10 |
5 6 9
|
mp2and |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) |
12 |
|
elrege0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) ) |
13 |
12
|
simprbi |
⊢ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
14 |
11 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
15 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
17 |
16 6
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
18 |
16 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
19 |
17 18
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
21 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
22 |
1 2 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
23 |
22 6
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
24 |
22 5
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
25 |
23 24
|
resubcld |
⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
27 |
24 23
|
posdifd |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ 0 < ( 𝑌 − 𝑋 ) ) ) |
28 |
27
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 < ( 𝑌 − 𝑋 ) ) |
29 |
|
ge0div |
⊢ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ∧ ( 𝑌 − 𝑋 ) ∈ ℝ ∧ 0 < ( 𝑌 − 𝑋 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ↔ 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) ) |
30 |
20 26 28 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ↔ 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) ) |
31 |
14 30
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ) |
32 |
31
|
ex |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 → 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ) ) |
33 |
17 18
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
34 |
32 33
|
sylibd |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
35 |
17
|
leidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
37 |
36
|
breq1d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑌 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
38 |
35 37
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑋 = 𝑌 → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
39 |
24 23
|
leloed |
⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |
40 |
7 39
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) |
41 |
34 38 40
|
mpjaod |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |