Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvgt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvgt0.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvgt0lem.d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) |
5 |
|
iccssxr |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ* |
6 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
7 |
5 6
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ℝ* ) |
8 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) |
9 |
5 8
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ℝ* ) |
10 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
13 |
12 6
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ℝ ) |
14 |
12 8
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ℝ ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) |
16 |
13 14 15
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≤ 𝑌 ) |
17 |
|
ubicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
18 |
7 9 16 17
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
19 |
18
|
fvresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
20 |
|
lbicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
21 |
7 9 16 20
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
22 |
21
|
fvresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
23 |
19 22
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ) |
24 |
23
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) = ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
25 |
|
iccss2 |
⊢ ( ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
26 |
25
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
27 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
28 |
|
rescncf |
⊢ ( ( 𝑋 [,] 𝑌 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
29 |
26 27 28
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
30 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) |
31 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐴 ∈ ℝ ) |
32 |
31
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐴 ∈ ℝ* ) |
33 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐵 ∈ ℝ ) |
34 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
35 |
31 33 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
36 |
6 35
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) |
37 |
36
|
simp2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐴 ≤ 𝑋 ) |
38 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) |
39 |
32 37 38
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) |
40 |
33
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐵 ∈ ℝ* ) |
41 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) |
42 |
31 33 41
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) |
43 |
8 42
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) |
44 |
43
|
simp3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ≤ 𝐵 ) |
45 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑌 ≤ 𝐵 ) → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
46 |
40 44 45
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
47 |
39 46
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
48 |
30 47
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ) |
49 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
50 |
49
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ℝ ⊆ ℂ ) |
51 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
52 |
3 51
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
54 |
|
fss |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
55 |
53 49 54
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
56 |
|
iccssre |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
57 |
13 14 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
58 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
59 |
58
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
60 |
58 59
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) ) ) |
61 |
50 55 12 57 60
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) ) ) |
62 |
|
iccntr |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
63 |
13 14 62
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
64 |
63
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) ) |
65 |
61 64
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) ) |
66 |
65
|
feq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ↔ ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ) ) |
67 |
48 66
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ) |
68 |
67
|
fdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( 𝑋 (,) 𝑌 ) ) |
69 |
13 14 15 29 68
|
mvth |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
70 |
67
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) ∈ 𝑆 ) |
71 |
|
eleq1 |
⊢ ( ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) ∈ 𝑆 ↔ ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) ) |
72 |
70 71
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) ) |
73 |
72
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ∃ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) ) |
74 |
69 73
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) |
75 |
24 74
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) |