| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvgt0.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | dvgt0.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | dvgt0.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 4 |  | dvgt0lem.d | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) | 
						
							| 5 |  | dvgt0lem.o | ⊢ 𝑂  Or  ℝ | 
						
							| 6 |  | dvgt0lem.i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 7 | 6 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  <  𝑦  →  ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 8 | 7 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥  <  𝑦  →  ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 9 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 11 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 12 |  | soss | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ℝ  →  (  <   Or  ℝ  →   <   Or  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 13 | 10 11 12 | mpisyl | ⊢ ( 𝜑  →   <   Or  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 14 | 5 | a1i | ⊢ ( 𝜑  →  𝑂  Or  ℝ ) | 
						
							| 15 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 17 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 18 |  | soisores | ⊢ ( ( (  <   Or  ( 𝐴 [,] 𝐵 )  ∧  𝑂  Or  ℝ )  ∧  ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ↔  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥  <  𝑦  →  ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 19 | 13 14 16 17 18 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ↔  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥  <  𝑦  →  ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 20 | 8 19 | mpbird | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 21 |  | ffn | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  →  𝐹  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 22 | 3 15 21 | 3syl | ⊢ ( 𝜑  →  𝐹  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 23 |  | fnresdm | ⊢ ( 𝐹  Fn  ( 𝐴 [,] 𝐵 )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  =  𝐹 ) | 
						
							| 24 |  | isoeq1 | ⊢ ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  =  𝐹  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ↔  𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 25 | 22 23 24 | 3syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ↔  𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 26 | 20 25 | mpbid | ⊢ ( 𝜑  →  𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 27 |  | fnima | ⊢ ( 𝐹  Fn  ( 𝐴 [,] 𝐵 )  →  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  =  ran  𝐹 ) | 
						
							| 28 |  | isoeq5 | ⊢ ( ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  =  ran  𝐹  →  ( 𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ↔  𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ran  𝐹 ) ) ) | 
						
							| 29 | 22 27 28 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ↔  𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ran  𝐹 ) ) ) | 
						
							| 30 | 26 29 | mpbid | ⊢ ( 𝜑  →  𝐹  Isom   <  ,  𝑂 ( ( 𝐴 [,] 𝐵 ) ,  ran  𝐹 ) ) |