Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvgt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvgt0.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvgt0lem.d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) |
5 |
|
dvgt0lem.o |
⊢ 𝑂 Or ℝ |
6 |
|
dvgt0lem.i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) |
7 |
6
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
8 |
7
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
11 |
|
ltso |
⊢ < Or ℝ |
12 |
|
soss |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( < Or ℝ → < Or ( 𝐴 [,] 𝐵 ) ) ) |
13 |
10 11 12
|
mpisyl |
⊢ ( 𝜑 → < Or ( 𝐴 [,] 𝐵 ) ) |
14 |
5
|
a1i |
⊢ ( 𝜑 → 𝑂 Or ℝ ) |
15 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
17 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
18 |
|
soisores |
⊢ ( ( ( < Or ( 𝐴 [,] 𝐵 ) ∧ 𝑂 Or ℝ ) ∧ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) |
19 |
13 14 16 17 18
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) |
20 |
8 19
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
21 |
|
ffn |
⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
22 |
3 15 21
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
23 |
|
fnresdm |
⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) = 𝐹 ) |
24 |
|
isoeq1 |
⊢ ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) = 𝐹 → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
25 |
22 23 24
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
26 |
20 25
|
mpbid |
⊢ ( 𝜑 → 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
27 |
|
fnima |
⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) → ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ran 𝐹 ) |
28 |
|
isoeq5 |
⊢ ( ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ran 𝐹 → ( 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
29 |
22 27 28
|
3syl |
⊢ ( 𝜑 → ( 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
30 |
26 29
|
mpbid |
⊢ ( 𝜑 → 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |