Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
⊢ ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ |
2 |
|
f1of |
⊢ ( ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
3 |
1 2
|
mp1i |
⊢ ( ⊤ → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
4 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → 𝑧 ∈ ℂ ) |
5 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → 𝑥 ∈ ℂ ) |
6 |
4 5
|
subcld |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
7 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → 𝑧 ≠ 𝑥 ) |
8 |
4 5 7
|
subne0d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( 𝑧 − 𝑥 ) ≠ 0 ) |
9 |
|
fvresi |
⊢ ( 𝑧 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑧 ) = 𝑧 ) |
10 |
|
fvresi |
⊢ ( 𝑥 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑥 ) = 𝑥 ) |
11 |
9 10
|
oveqan12rd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) = ( 𝑧 − 𝑥 ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) = ( 𝑧 − 𝑥 ) ) |
13 |
6 8 12
|
diveq1bd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 1 ) |
14 |
13
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 1 ) |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
3 14 15
|
dvidlem |
⊢ ( ⊤ → ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) ) |
17 |
16
|
mptru |
⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) |