Step |
Hyp |
Ref |
Expression |
1 |
|
dvidlem.1 |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
2 |
|
dvidlem.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) |
3 |
|
dvidlem.3 |
⊢ 𝐵 ∈ ℂ |
4 |
|
dvfcn |
⊢ ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ |
5 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
6 |
5 1 5
|
dvbss |
⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) ⊆ ℂ ) |
7 |
|
reldv |
⊢ Rel ( ℂ D 𝐹 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
10 |
9
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
11 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
12 |
11
|
ntrtop |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ ) |
13 |
10 12
|
ax-mp |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ |
14 |
8 13
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ) |
15 |
|
limcresi |
⊢ ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) limℂ 𝑥 ) ⊆ ( ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) limℂ 𝑥 ) |
16 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ℂ ⊆ ℂ ) |
17 |
|
cncfmptc |
⊢ ( ( 𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ ℂ ↦ 𝐵 ) ∈ ( ℂ –cn→ ℂ ) ) |
18 |
3 16 16 17
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ∈ ℂ ↦ 𝐵 ) ∈ ( ℂ –cn→ ℂ ) ) |
19 |
|
eqidd |
⊢ ( 𝑧 = 𝑥 → 𝐵 = 𝐵 ) |
20 |
18 8 19
|
cnmptlimc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) limℂ 𝑥 ) ) |
21 |
15 20
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
22 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↔ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) |
23 |
2
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ → ( 𝑧 ≠ 𝑥 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) ) ) ) |
24 |
23
|
imp43 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) |
25 |
22 24
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) |
26 |
25
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ 𝐵 ) ) |
27 |
|
difss |
⊢ ( ℂ ∖ { 𝑥 } ) ⊆ ℂ |
28 |
|
resmpt |
⊢ ( ( ℂ ∖ { 𝑥 } ) ⊆ ℂ → ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ 𝐵 ) ) |
29 |
27 28
|
ax-mp |
⊢ ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ 𝐵 ) |
30 |
26 29
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) ) |
31 |
30
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
32 |
21 31
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
33 |
9
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
34 |
33
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
35 |
|
eqid |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
36 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐹 : ℂ ⟶ ℂ ) |
37 |
34 9 35 16 36 16
|
eldv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ( ℂ D 𝐹 ) 𝐵 ↔ ( 𝑥 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ∧ 𝐵 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
38 |
14 32 37
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ( ℂ D 𝐹 ) 𝐵 ) |
39 |
|
releldm |
⊢ ( ( Rel ( ℂ D 𝐹 ) ∧ 𝑥 ( ℂ D 𝐹 ) 𝐵 ) → 𝑥 ∈ dom ( ℂ D 𝐹 ) ) |
40 |
7 38 39
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ dom ( ℂ D 𝐹 ) ) |
41 |
6 40
|
eqelssd |
⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = ℂ ) |
42 |
41
|
feq2d |
⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ ↔ ( ℂ D 𝐹 ) : ℂ ⟶ ℂ ) ) |
43 |
4 42
|
mpbii |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) : ℂ ⟶ ℂ ) |
44 |
43
|
ffnd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) Fn ℂ ) |
45 |
|
fnconstg |
⊢ ( 𝐵 ∈ ℂ → ( ℂ × { 𝐵 } ) Fn ℂ ) |
46 |
3 45
|
mp1i |
⊢ ( 𝜑 → ( ℂ × { 𝐵 } ) Fn ℂ ) |
47 |
|
ffun |
⊢ ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ → Fun ( ℂ D 𝐹 ) ) |
48 |
4 47
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → Fun ( ℂ D 𝐹 ) ) |
49 |
|
funbrfvb |
⊢ ( ( Fun ( ℂ D 𝐹 ) ∧ 𝑥 ∈ dom ( ℂ D 𝐹 ) ) → ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = 𝐵 ↔ 𝑥 ( ℂ D 𝐹 ) 𝐵 ) ) |
50 |
48 40 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = 𝐵 ↔ 𝑥 ( ℂ D 𝐹 ) 𝐵 ) ) |
51 |
38 50
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = 𝐵 ) |
52 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
53 |
|
fvconst2g |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ℂ × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 ) |
54 |
52 53
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 ) |
55 |
51 54
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = ( ( ℂ × { 𝐵 } ) ‘ 𝑥 ) ) |
56 |
44 46 55
|
eqfnfvd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ × { 𝐵 } ) ) |