Step |
Hyp |
Ref |
Expression |
1 |
|
dvivth.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
2 |
|
dvivth.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
3 |
|
dvivth.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvivth.4 |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
7 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
10 |
9
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → - ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
11 |
10
|
fmpttd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
12 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
13 |
|
ssid |
⊢ ℂ ⊆ ℂ |
14 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
15 |
12 13 14
|
mp2an |
⊢ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) |
16 |
15 3
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
17 |
|
eqid |
⊢ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) |
18 |
17
|
negfcncf |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
19 |
16 18
|
syl |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
20 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
21 |
12 19 20
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
22 |
11 21
|
mpbird |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
24 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ℝ ∈ { ℝ , ℂ } ) |
26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
27 |
26
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℂ ) |
29 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V ) |
30 |
26
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝐹 = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑤 ) ) ) ) |
32 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
33 |
|
dvfre |
⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
34 |
8 32 33
|
sylancl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
35 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
36 |
34 35
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
38 |
37
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
39 |
31 38
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
40 |
25 28 29 39
|
dvmptneg |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
41 |
40
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → dom ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = dom ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
42 |
|
dmmptg |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V → dom ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( 𝐴 (,) 𝐵 ) ) |
43 |
|
negex |
⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V |
44 |
43
|
a1i |
⊢ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ V ) |
45 |
42 44
|
mprg |
⊢ dom ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( 𝐴 (,) 𝐵 ) |
46 |
41 45
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → dom ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
47 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑀 < 𝑁 ) |
48 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) |
49 |
36 1
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
51 |
2 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ dom ( ℝ D 𝐹 ) ) |
52 |
34 51
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
54 |
|
iccssre |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ℝ ) |
55 |
49 52 54
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ℝ ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ℝ ) |
57 |
56 48
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ℝ ) |
58 |
|
iccneg |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ↔ - 𝑥 ∈ ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
59 |
50 53 57 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ↔ - 𝑥 ∈ ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
60 |
48 59
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
61 |
40
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) = ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑁 ) ) |
62 |
|
fveq2 |
⊢ ( 𝑤 = 𝑁 → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
63 |
62
|
negeqd |
⊢ ( 𝑤 = 𝑁 → - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
64 |
|
eqid |
⊢ ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) |
65 |
|
negex |
⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ V |
66 |
63 64 65
|
fvmpt |
⊢ ( 𝑁 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑁 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
67 |
6 66
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑁 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
68 |
61 67
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
69 |
40
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) = ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑀 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑤 = 𝑀 → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
71 |
70
|
negeqd |
⊢ ( 𝑤 = 𝑀 → - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
72 |
|
negex |
⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ V |
73 |
71 64 72
|
fvmpt |
⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑀 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
74 |
5 73
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ‘ 𝑀 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
75 |
69 74
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
76 |
68 75
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) [,] ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) ) = ( - ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] - ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
77 |
60 76
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ( ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑁 ) [,] ( ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ‘ 𝑀 ) ) ) |
78 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑦 ) − ( - 𝑥 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑦 ) − ( - 𝑥 · 𝑦 ) ) ) |
79 |
5 6 23 46 47 77 78
|
dvivthlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ran ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) ) |
80 |
40
|
rneqd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ran ( ℝ D ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑤 ) ) ) = ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
81 |
79 80
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → - 𝑥 ∈ ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
82 |
|
negex |
⊢ - 𝑥 ∈ V |
83 |
64
|
elrnmpt |
⊢ ( - 𝑥 ∈ V → ( - 𝑥 ∈ ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
84 |
82 83
|
ax-mp |
⊢ ( - 𝑥 ∈ ran ( 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) |
85 |
81 84
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) |
86 |
57
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ℂ ) |
87 |
86
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℂ ) |
88 |
25 28 29 39
|
dvmptcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ∈ ℂ ) |
89 |
87 88
|
neg11ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ 𝑥 = ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ) |
90 |
|
eqcom |
⊢ ( 𝑥 = ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) |
91 |
89 90
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) ∧ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ) → ( - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) |
92 |
91
|
rexbidva |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) - 𝑥 = - ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) |
93 |
85 92
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) |
94 |
37
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ) |
95 |
|
fvelrnb |
⊢ ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) |
96 |
94 95
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ ∃ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑤 ) = 𝑥 ) ) |
97 |
93 96
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑀 < 𝑁 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) |
98 |
97
|
expr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑁 ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) ) |
99 |
98
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑁 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
100 |
|
fveq2 |
⊢ ( 𝑀 = 𝑁 → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) = ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
101 |
100
|
oveq1d |
⊢ ( 𝑀 = 𝑁 → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) |
102 |
52
|
rexrd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ* ) |
103 |
|
iccid |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ* → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ) |
104 |
102 103
|
syl |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ) |
105 |
101 104
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑁 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) = { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ) |
106 |
34
|
ffnd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ) |
107 |
|
fnfvelrn |
⊢ ( ( ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ∧ 𝑁 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ran ( ℝ D 𝐹 ) ) |
108 |
106 51 107
|
syl2anc |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ran ( ℝ D 𝐹 ) ) |
109 |
108
|
snssd |
⊢ ( 𝜑 → { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ⊆ ran ( ℝ D 𝐹 ) ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑁 ) → { ( ( ℝ D 𝐹 ) ‘ 𝑁 ) } ⊆ ran ( ℝ D 𝐹 ) ) |
111 |
105 110
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑁 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
112 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
113 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
114 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
115 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
116 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑁 < 𝑀 ) |
117 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) |
118 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝑥 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝑥 · 𝑦 ) ) ) |
119 |
112 113 114 115 116 117 118
|
dvivthlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑁 < 𝑀 ∧ 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) |
120 |
119
|
expr |
⊢ ( ( 𝜑 ∧ 𝑁 < 𝑀 ) → ( 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) → 𝑥 ∈ ran ( ℝ D 𝐹 ) ) ) |
121 |
120
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑁 < 𝑀 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
122 |
32 1
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
123 |
32 2
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
124 |
122 123
|
lttri4d |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
125 |
99 111 121 124
|
mpjao3dan |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑀 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |