| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvivth.1 | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 2 |  | dvivth.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 3 |  | dvivth.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | 
						
							| 4 |  | dvivth.4 | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 5 |  | dvivth.5 | ⊢ ( 𝜑  →  𝑀  <  𝑁 ) | 
						
							| 6 |  | dvivth.6 | ⊢ ( 𝜑  →  𝐶  ∈  ( ( ( ℝ  D  𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) ) ) | 
						
							| 7 |  | dvivth.7 | ⊢ 𝐺  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐶  ·  𝑦 ) ) ) | 
						
							| 8 |  | ioossre | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℝ | 
						
							| 9 | 8 1 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 10 | 8 2 | sselid | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 11 | 9 10 5 | ltled | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 12 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 15 |  | dvfre | ⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ  ∧  ( 𝐴 (,) 𝐵 )  ⊆  ℝ )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 16 | 13 8 15 | sylancl | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 17 | 2 4 | eleqtrrd | ⊢ ( 𝜑  →  𝑁  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 18 | 16 17 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 19 | 1 4 | eleqtrrd | ⊢ ( 𝜑  →  𝑀  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 20 | 16 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 21 |  | iccssre | ⊢ ( ( ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ∈  ℝ  ∧  ( ( ℝ  D  𝐹 ) ‘ 𝑀 )  ∈  ℝ )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) )  ⊆  ℝ ) | 
						
							| 22 | 18 20 21 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) )  ⊆  ℝ ) | 
						
							| 23 | 22 6 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 25 | 8 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 26 | 25 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 27 | 24 26 | remulcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐶  ·  𝑦 )  ∈  ℝ ) | 
						
							| 28 | 14 27 | resubcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐶  ·  𝑦 ) )  ∈  ℝ ) | 
						
							| 29 | 28 7 | fmptd | ⊢ ( 𝜑  →  𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 30 |  | iccssioo2 | ⊢ ( ( 𝑀  ∈  ( 𝐴 (,) 𝐵 )  ∧  𝑁  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝑀 [,] 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 31 | 1 2 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀 [,] 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 32 | 29 31 | fssresd | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 33 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 35 |  | fss | ⊢ ( ( 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 36 | 29 33 35 | sylancl | ⊢ ( 𝜑  →  𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 37 | 7 | oveq2i | ⊢ ( ℝ  D  𝐺 )  =  ( ℝ  D  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐶  ·  𝑦 ) ) ) ) | 
						
							| 38 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 40 | 14 | recnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 41 | 4 | feq2d | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ  ↔  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) | 
						
							| 42 | 16 41 | mpbid | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 44 | 13 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( ℝ  D  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 46 | 42 | feqmptd | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 47 | 45 46 | eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 48 | 27 | recnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐶  ·  𝑦 )  ∈  ℂ ) | 
						
							| 49 |  | remulcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐶  ·  𝑦 )  ∈  ℝ ) | 
						
							| 50 | 23 49 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐶  ·  𝑦 )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐶  ·  𝑦 )  ∈  ℂ ) | 
						
							| 52 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝐶  ∈  ℝ ) | 
						
							| 53 | 34 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℂ ) | 
						
							| 54 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  1  ∈  ℂ ) | 
						
							| 55 | 39 | dvmptid | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  ℝ  ↦  𝑦 ) )  =  ( 𝑦  ∈  ℝ  ↦  1 ) ) | 
						
							| 56 | 23 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 57 | 39 53 54 55 56 | dvmptcmul | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  ℝ  ↦  ( 𝐶  ·  𝑦 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  ( 𝐶  ·  1 ) ) ) | 
						
							| 58 | 56 | mulridd | ⊢ ( 𝜑  →  ( 𝐶  ·  1 )  =  𝐶 ) | 
						
							| 59 | 58 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  ( 𝐶  ·  1 ) )  =  ( 𝑦  ∈  ℝ  ↦  𝐶 ) ) | 
						
							| 60 | 57 59 | eqtrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  ℝ  ↦  ( 𝐶  ·  𝑦 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  𝐶 ) ) | 
						
							| 61 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 62 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 63 |  | iooretop | ⊢ ( 𝐴 (,) 𝐵 )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 64 | 63 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 65 | 39 51 52 60 25 61 62 64 | dvmptres | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐶  ·  𝑦 ) ) )  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝐶 ) ) | 
						
							| 66 | 39 40 43 47 48 24 65 | dvmptsub | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐶  ·  𝑦 ) ) ) )  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) ) | 
						
							| 67 | 37 66 | eqtrid | ⊢ ( 𝜑  →  ( ℝ  D  𝐺 )  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) ) | 
						
							| 68 | 67 | dmeqd | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐺 )  =  dom  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) ) | 
						
							| 69 |  | dmmptg | ⊢ ( ∀ 𝑦  ∈  ( 𝐴 (,) 𝐵 ) ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 )  ∈  V  →  dom  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 70 |  | ovex | ⊢ ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 )  ∈  V | 
						
							| 71 | 70 | a1i | ⊢ ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 )  ∈  V ) | 
						
							| 72 | 69 71 | mprg | ⊢ dom  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) )  =  ( 𝐴 (,) 𝐵 ) | 
						
							| 73 | 68 72 | eqtrdi | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐺 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 74 |  | dvcn | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐴 (,) 𝐵 )  ⊆  ℝ )  ∧  dom  ( ℝ  D  𝐺 )  =  ( 𝐴 (,) 𝐵 ) )  →  𝐺  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 75 | 34 36 25 73 74 | syl31anc | ⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 76 |  | rescncf | ⊢ ( ( 𝑀 [,] 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 )  →  ( 𝐺  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  →  ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) ) | 
						
							| 77 | 31 75 76 | sylc | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) | 
						
							| 78 |  | cncfcdm | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) )  →  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ )  ↔  ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) | 
						
							| 79 | 33 77 78 | sylancr | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ )  ↔  ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) | 
						
							| 80 | 32 79 | mpbird | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 81 | 9 10 11 80 | evthicc | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  ∧  ∃ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ) ) | 
						
							| 82 | 81 | simpld | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ) | 
						
							| 83 |  | fvres | ⊢ ( 𝑧  ∈  ( 𝑀 [,] 𝑁 )  →  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 84 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  →  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 85 | 83 84 | breqan12rd | ⊢ ( ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ∧  𝑧  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  ↔  ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 86 | 85 | ralbidva | ⊢ ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  →  ( ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  ↔  ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  ↔  ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 88 |  | ioossicc | ⊢ ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 ) | 
						
							| 89 |  | ssralv | ⊢ ( ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 )  →  ( ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 90 | 88 89 | ax-mp | ⊢ ( ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 91 | 87 90 | biimtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  →  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 92 | 31 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 93 | 42 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 94 | 92 93 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 95 | 94 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 97 | 56 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐶  ∈  ℂ ) | 
						
							| 98 | 67 | fveq1d | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  =  ( ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) ‘ 𝑥 ) ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  =  ( ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) ‘ 𝑥 ) ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 )  =  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 102 |  | eqid | ⊢ ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) )  =  ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) | 
						
							| 103 |  | ovex | ⊢ ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 )  ∈  V | 
						
							| 104 | 101 102 103 | fvmpt | ⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  ( ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) ‘ 𝑥 )  =  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 105 | 92 104 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  −  𝐶 ) ) ‘ 𝑥 )  =  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 106 | 99 105 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  =  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  =  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 108 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 109 | 8 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 110 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 111 | 88 31 | sstrid | ⊢ ( 𝜑  →  ( 𝑀 (,) 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 112 | 111 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝑀 (,) 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 113 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 114 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  dom  ( ℝ  D  𝐺 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 115 | 113 114 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  dom  ( ℝ  D  𝐺 ) ) | 
						
							| 116 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 117 |  | fveq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 118 | 117 | breq1d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  ↔  ( 𝐺 ‘ 𝑤 )  ≤  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 119 | 118 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  ↔  ∀ 𝑤  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 120 | 116 119 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑤  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 121 | 108 109 110 112 115 120 | dvferm | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  =  0 ) | 
						
							| 122 | 107 121 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 )  =  0 ) | 
						
							| 123 | 96 97 122 | subeq0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) | 
						
							| 124 | 123 | exp32 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  →  ( ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 125 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 126 | 125 | elpr | ⊢ ( 𝑥  ∈  { 𝑀 ,  𝑁 }  ↔  ( 𝑥  =  𝑀  ∨  𝑥  =  𝑁 ) ) | 
						
							| 127 | 106 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  =  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 128 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 129 | 8 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 130 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  =  𝑀 ) | 
						
							| 131 |  | eliooord | ⊢ ( 𝑀  ∈  ( 𝐴 (,) 𝐵 )  →  ( 𝐴  <  𝑀  ∧  𝑀  <  𝐵 ) ) | 
						
							| 132 | 1 131 | syl | ⊢ ( 𝜑  →  ( 𝐴  <  𝑀  ∧  𝑀  <  𝐵 ) ) | 
						
							| 133 | 132 | simpld | ⊢ ( 𝜑  →  𝐴  <  𝑀 ) | 
						
							| 134 |  | ne0i | ⊢ ( 𝑀  ∈  ( 𝐴 (,) 𝐵 )  →  ( 𝐴 (,) 𝐵 )  ≠  ∅ ) | 
						
							| 135 |  | ndmioo | ⊢ ( ¬  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 136 | 135 | necon1ai | ⊢ ( ( 𝐴 (,) 𝐵 )  ≠  ∅  →  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) ) | 
						
							| 137 | 1 134 136 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) ) | 
						
							| 138 | 137 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 139 | 10 | rexrd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ* ) | 
						
							| 140 |  | elioo2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝑁  ∈  ℝ* )  →  ( 𝑀  ∈  ( 𝐴 (,) 𝑁 )  ↔  ( 𝑀  ∈  ℝ  ∧  𝐴  <  𝑀  ∧  𝑀  <  𝑁 ) ) ) | 
						
							| 141 | 138 139 140 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 𝐴 (,) 𝑁 )  ↔  ( 𝑀  ∈  ℝ  ∧  𝐴  <  𝑀  ∧  𝑀  <  𝑁 ) ) ) | 
						
							| 142 | 9 133 5 141 | mpbir3and | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐴 (,) 𝑁 ) ) | 
						
							| 143 | 142 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑀  ∈  ( 𝐴 (,) 𝑁 ) ) | 
						
							| 144 | 130 143 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  ( 𝐴 (,) 𝑁 ) ) | 
						
							| 145 | 137 | simprd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 146 |  | eliooord | ⊢ ( 𝑁  ∈  ( 𝐴 (,) 𝐵 )  →  ( 𝐴  <  𝑁  ∧  𝑁  <  𝐵 ) ) | 
						
							| 147 | 2 146 | syl | ⊢ ( 𝜑  →  ( 𝐴  <  𝑁  ∧  𝑁  <  𝐵 ) ) | 
						
							| 148 | 147 | simprd | ⊢ ( 𝜑  →  𝑁  <  𝐵 ) | 
						
							| 149 | 139 145 148 | xrltled | ⊢ ( 𝜑  →  𝑁  ≤  𝐵 ) | 
						
							| 150 |  | iooss2 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝑁  ≤  𝐵 )  →  ( 𝐴 (,) 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 151 | 145 149 150 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 152 | 151 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝐴 (,) 𝑁 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 153 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 154 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  dom  ( ℝ  D  𝐺 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 155 | 153 154 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  dom  ( ℝ  D  𝐺 ) ) | 
						
							| 156 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 157 | 156 119 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑤  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 158 | 130 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝑥 (,) 𝑁 )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 159 | 157 158 | raleqtrrdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑤  ∈  ( 𝑥 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 160 | 128 129 144 152 155 159 | dvferm1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  ≤  0 ) | 
						
							| 161 | 127 160 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 )  ≤  0 ) | 
						
							| 162 | 94 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 163 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 164 | 162 163 | suble0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 )  ≤  0  ↔  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ≤  𝐶 ) ) | 
						
							| 165 | 161 164 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ≤  𝐶 ) | 
						
							| 166 |  | elicc2 | ⊢ ( ( ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ∈  ℝ  ∧  ( ( ℝ  D  𝐹 ) ‘ 𝑀 )  ∈  ℝ )  →  ( 𝐶  ∈  ( ( ( ℝ  D  𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) )  ↔  ( 𝐶  ∈  ℝ  ∧  ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ≤  𝐶  ∧  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) ) ) ) | 
						
							| 167 | 18 20 166 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( ( ( ℝ  D  𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) )  ↔  ( 𝐶  ∈  ℝ  ∧  ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ≤  𝐶  ∧  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) ) ) ) | 
						
							| 168 | 6 167 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ∈  ℝ  ∧  ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ≤  𝐶  ∧  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) ) ) | 
						
							| 169 | 168 | simp3d | ⊢ ( 𝜑  →  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) ) | 
						
							| 170 | 169 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) ) | 
						
							| 171 | 130 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑀 ) ) | 
						
							| 172 | 170 171 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 173 | 162 163 | letri3d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶  ↔  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ≤  𝐶  ∧  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 174 | 165 172 173 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑀  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) | 
						
							| 175 | 174 | exp32 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑥  =  𝑀  →  ( ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 176 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  =  𝑁 ) | 
						
							| 177 | 176 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 178 | 168 | simp2d | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ≤  𝐶 ) | 
						
							| 179 | 178 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑁 )  ≤  𝐶 ) | 
						
							| 180 | 177 179 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ≤  𝐶 ) | 
						
							| 181 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 182 | 8 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 183 | 9 | rexrd | ⊢ ( 𝜑  →  𝑀  ∈  ℝ* ) | 
						
							| 184 |  | elioo2 | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝑁  ∈  ( 𝑀 (,) 𝐵 )  ↔  ( 𝑁  ∈  ℝ  ∧  𝑀  <  𝑁  ∧  𝑁  <  𝐵 ) ) ) | 
						
							| 185 | 183 145 184 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( 𝑀 (,) 𝐵 )  ↔  ( 𝑁  ∈  ℝ  ∧  𝑀  <  𝑁  ∧  𝑁  <  𝐵 ) ) ) | 
						
							| 186 | 10 5 148 185 | mpbir3and | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 (,) 𝐵 ) ) | 
						
							| 187 | 186 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑁  ∈  ( 𝑀 (,) 𝐵 ) ) | 
						
							| 188 | 176 187 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  ( 𝑀 (,) 𝐵 ) ) | 
						
							| 189 | 138 183 133 | xrltled | ⊢ ( 𝜑  →  𝐴  ≤  𝑀 ) | 
						
							| 190 |  | iooss1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≤  𝑀 )  →  ( 𝑀 (,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 191 | 138 189 190 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀 (,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 192 | 191 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝑀 (,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 193 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 194 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  dom  ( ℝ  D  𝐺 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 195 | 193 194 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  dom  ( ℝ  D  𝐺 ) ) | 
						
							| 196 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 197 | 196 119 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑤  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 198 | 176 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝑀 (,) 𝑥 )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 199 | 197 198 | raleqtrrdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑤  ∈  ( 𝑀 (,) 𝑥 ) ( 𝐺 ‘ 𝑤 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 200 | 181 182 188 192 195 199 | dvferm2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  0  ≤  ( ( ℝ  D  𝐺 ) ‘ 𝑥 ) ) | 
						
							| 201 | 106 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐺 ) ‘ 𝑥 )  =  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 202 | 200 201 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  0  ≤  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 ) ) | 
						
							| 203 | 94 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 204 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 205 | 203 204 | subge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 0  ≤  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  𝐶 )  ↔  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 206 | 202 205 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 207 | 203 204 | letri3d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶  ↔  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ≤  𝐶  ∧  𝐶  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 208 | 180 206 207 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  ( 𝑥  =  𝑁  ∧  ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) | 
						
							| 209 | 208 | exp32 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑥  =  𝑁  →  ( ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 210 | 175 209 | jaod | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ( 𝑥  =  𝑀  ∨  𝑥  =  𝑁 )  →  ( ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 211 | 126 210 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑥  ∈  { 𝑀 ,  𝑁 }  →  ( ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 212 |  | elun | ⊢ ( 𝑥  ∈  ( ( 𝑀 (,) 𝑁 )  ∪  { 𝑀 ,  𝑁 } )  ↔  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∨  𝑥  ∈  { 𝑀 ,  𝑁 } ) ) | 
						
							| 213 |  | prunioo | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝑁  ∈  ℝ*  ∧  𝑀  ≤  𝑁 )  →  ( ( 𝑀 (,) 𝑁 )  ∪  { 𝑀 ,  𝑁 } )  =  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 214 | 183 139 11 213 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑀 (,) 𝑁 )  ∪  { 𝑀 ,  𝑁 } )  =  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 215 | 214 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀 (,) 𝑁 )  ∪  { 𝑀 ,  𝑁 } )  ↔  𝑥  ∈  ( 𝑀 [,] 𝑁 ) ) ) | 
						
							| 216 | 212 215 | bitr3id | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∨  𝑥  ∈  { 𝑀 ,  𝑁 } )  ↔  𝑥  ∈  ( 𝑀 [,] 𝑁 ) ) ) | 
						
							| 217 | 216 | biimpar | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ∨  𝑥  ∈  { 𝑀 ,  𝑁 } ) ) | 
						
							| 218 | 124 211 217 | mpjaod | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ∀ 𝑧  ∈  ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 )  ≤  ( 𝐺 ‘ 𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 219 | 91 218 | syld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 220 | 219 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) ∀ 𝑧  ∈  ( 𝑀 [,] 𝑁 ) ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 )  ≤  ( ( 𝐺  ↾  ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 )  →  ∃ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 221 | 82 220 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  𝐶 ) |