Step |
Hyp |
Ref |
Expression |
1 |
|
dvivth.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
2 |
|
dvivth.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
3 |
|
dvivth.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvivth.4 |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
5 |
|
dvivth.5 |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
6 |
|
dvivth.6 |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
7 |
|
dvivth.7 |
⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) |
8 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
9 |
8 1
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
10 |
8 2
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
11 |
9 10 5
|
ltled |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
12 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
14 |
13
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
15 |
|
dvfre |
⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
16 |
13 8 15
|
sylancl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
17 |
2 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ dom ( ℝ D 𝐹 ) ) |
18 |
16 17
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
19 |
1 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ dom ( ℝ D 𝐹 ) ) |
20 |
16 19
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
21 |
|
iccssre |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ⊆ ℝ ) |
22 |
18 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ⊆ ℝ ) |
23 |
22 6
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |
25 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
26 |
25
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ℝ ) |
27 |
24 26
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
28 |
14 27
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ∈ ℝ ) |
29 |
28 7
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
30 |
|
iccssioo2 |
⊢ ( ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
31 |
1 2 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
32 |
29 31
|
fssresd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
33 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
34 |
33
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
35 |
|
fss |
⊢ ( ( 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
36 |
29 33 35
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
37 |
7
|
oveq2i |
⊢ ( ℝ D 𝐺 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) ) |
38 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
39 |
38
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
40 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
41 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
42 |
16 41
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
43 |
42
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
44 |
13
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
46 |
42
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
47 |
45 46
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
48 |
27
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 · 𝑦 ) ∈ ℂ ) |
49 |
|
remulcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
50 |
23 49
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℝ ) |
51 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · 𝑦 ) ∈ ℂ ) |
52 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
53 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
54 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
55 |
39
|
dvmptid |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
56 |
23
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
57 |
39 53 54 55 56
|
dvmptcmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 1 ) ) ) |
58 |
56
|
mulid1d |
⊢ ( 𝜑 → ( 𝐶 · 1 ) = 𝐶 ) |
59 |
58
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 1 ) ) = ( 𝑦 ∈ ℝ ↦ 𝐶 ) ) |
60 |
57 59
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ 𝐶 ) ) |
61 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
62 |
61
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
63 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
64 |
63
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
65 |
39 51 52 60 25 62 61 64
|
dvmptres |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐶 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ) |
66 |
39 40 43 47 48 24 65
|
dvmptsub |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
67 |
37 66
|
syl5eq |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
68 |
67
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ) |
69 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V → dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝐴 (,) 𝐵 ) ) |
70 |
|
ovex |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V |
71 |
70
|
a1i |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ∈ V ) |
72 |
69 71
|
mprg |
⊢ dom ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝐴 (,) 𝐵 ) |
73 |
68 72
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
74 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
75 |
34 36 25 73 74
|
syl31anc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
76 |
|
rescncf |
⊢ ( ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( 𝐺 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) ) |
77 |
31 75 76
|
sylc |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) |
78 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) |
79 |
33 77 78
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) ) |
80 |
32 79
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
81 |
9 10 11 80
|
evthicc |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ∧ ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ) ) |
82 |
81
|
simpld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ) |
83 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
84 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
85 |
83 84
|
breqan12rd |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
86 |
85
|
ralbidva |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
88 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
89 |
|
ssralv |
⊢ ( ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
90 |
88 89
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
91 |
87 90
|
syl6bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
92 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
93 |
42
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
94 |
92 93
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
95 |
94
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
96 |
95
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
97 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℂ ) |
98 |
67
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) ) |
99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) ) |
100 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
101 |
100
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
102 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) |
103 |
|
ovex |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ∈ V |
104 |
101 102 103
|
fvmpt |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
105 |
92 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) − 𝐶 ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
106 |
99 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
108 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
109 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
110 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) |
111 |
88 31
|
sstrid |
⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
112 |
111
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
113 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
114 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
115 |
113 114
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
116 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
117 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑤 ) ) |
118 |
117
|
breq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
119 |
118
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
120 |
116 119
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
121 |
108 109 110 112 115 120
|
dvferm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = 0 ) |
122 |
107 121
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) = 0 ) |
123 |
96 97 122
|
subeq0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
124 |
123
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
125 |
|
vex |
⊢ 𝑥 ∈ V |
126 |
125
|
elpr |
⊢ ( 𝑥 ∈ { 𝑀 , 𝑁 } ↔ ( 𝑥 = 𝑀 ∨ 𝑥 = 𝑁 ) ) |
127 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
128 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
129 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
130 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 = 𝑀 ) |
131 |
|
eliooord |
⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑀 ∧ 𝑀 < 𝐵 ) ) |
132 |
1 131
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝑀 ∧ 𝑀 < 𝐵 ) ) |
133 |
132
|
simpld |
⊢ ( 𝜑 → 𝐴 < 𝑀 ) |
134 |
|
ne0i |
⊢ ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
135 |
|
ndmioo |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
136 |
135
|
necon1ai |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
137 |
1 134 136
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
138 |
137
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
139 |
10
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
140 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
141 |
138 139 140
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
142 |
9 133 5 141
|
mpbir3and |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ) |
143 |
142
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑀 ∈ ( 𝐴 (,) 𝑁 ) ) |
144 |
130 143
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝑁 ) ) |
145 |
137
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
146 |
|
eliooord |
⊢ ( 𝑁 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑁 ∧ 𝑁 < 𝐵 ) ) |
147 |
2 146
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝑁 ∧ 𝑁 < 𝐵 ) ) |
148 |
147
|
simprd |
⊢ ( 𝜑 → 𝑁 < 𝐵 ) |
149 |
139 145 148
|
xrltled |
⊢ ( 𝜑 → 𝑁 ≤ 𝐵 ) |
150 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑁 ≤ 𝐵 ) → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
151 |
145 149 150
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
152 |
151
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
153 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
154 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
155 |
153 154
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
156 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
157 |
156 119
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
158 |
130
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑥 (,) 𝑁 ) = ( 𝑀 (,) 𝑁 ) ) |
159 |
158
|
raleqdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑥 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
160 |
157 159
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑥 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
161 |
128 129 144 152 155 160
|
dvferm1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ≤ 0 ) |
162 |
127 161
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ≤ 0 ) |
163 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
164 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
165 |
163 164
|
suble0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ≤ 0 ↔ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) ) |
166 |
162 165
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) |
167 |
|
elicc2 |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
168 |
18 20 167
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) ) |
169 |
6 168
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
170 |
169
|
simp3d |
⊢ ( 𝜑 → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
171 |
170
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
172 |
130
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) |
173 |
171 172
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
174 |
163 164
|
letri3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
175 |
166 173 174
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑀 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
176 |
175
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 = 𝑀 → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
177 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 = 𝑁 ) |
178 |
177
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ) |
179 |
169
|
simp2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ) |
180 |
179
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑁 ) ≤ 𝐶 ) |
181 |
178 180
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ) |
182 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
183 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
184 |
9
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
185 |
|
elioo2 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵 ) ) ) |
186 |
184 145 185
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵 ) ) ) |
187 |
10 5 148 186
|
mpbir3and |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ) |
188 |
187
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑁 ∈ ( 𝑀 (,) 𝐵 ) ) |
189 |
177 188
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝐵 ) ) |
190 |
138 184 133
|
xrltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
191 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑀 ) → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
192 |
138 190 191
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
193 |
192
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
194 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
195 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
196 |
194 195
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( ℝ D 𝐺 ) ) |
197 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
198 |
197 119
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
199 |
177
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑀 (,) 𝑥 ) = ( 𝑀 (,) 𝑁 ) ) |
200 |
199
|
raleqdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑀 (,) 𝑥 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
201 |
198 200
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑤 ∈ ( 𝑀 (,) 𝑥 ) ( 𝐺 ‘ 𝑤 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
202 |
182 183 189 193 196 201
|
dvferm2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 0 ≤ ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) |
203 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
204 |
202 203
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 0 ≤ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ) |
205 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
206 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
207 |
205 206
|
subge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( 0 ≤ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − 𝐶 ) ↔ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
208 |
204 207
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
209 |
205 206
|
letri3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 𝐶 ∧ 𝐶 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
210 |
181 208 209
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ ( 𝑥 = 𝑁 ∧ ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
211 |
210
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 = 𝑁 → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
212 |
176 211
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝑥 = 𝑀 ∨ 𝑥 = 𝑁 ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
213 |
126 212
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ { 𝑀 , 𝑁 } → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
214 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ) |
215 |
|
prunioo |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) = ( 𝑀 [,] 𝑁 ) ) |
216 |
184 139 11 215
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) = ( 𝑀 [,] 𝑁 ) ) |
217 |
216
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 (,) 𝑁 ) ∪ { 𝑀 , 𝑁 } ) ↔ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
218 |
214 217
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ↔ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
219 |
218
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ∨ 𝑥 ∈ { 𝑀 , 𝑁 } ) ) |
220 |
124 213 219
|
mpjaod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 (,) 𝑁 ) ( 𝐺 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
221 |
91 220
|
syld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
222 |
221
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ∀ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑧 ) ≤ ( ( 𝐺 ↾ ( 𝑀 [,] 𝑁 ) ) ‘ 𝑥 ) → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) ) |
223 |
82 222
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |