Step |
Hyp |
Ref |
Expression |
1 |
|
dvivth.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ) |
2 |
|
dvivth.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) |
3 |
|
dvivth.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvivth.4 |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
5 |
|
dvivth.5 |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
6 |
|
dvivth.6 |
⊢ ( 𝜑 → 𝐶 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑁 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑀 ) ) ) |
7 |
|
dvivth.7 |
⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐶 · 𝑦 ) ) ) |
8 |
1 2 3 4 5 6 7
|
dvivthlem1 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 ) |
9 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
10 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
11 |
9 10
|
mpbii |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
12 |
11
|
ffnd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ) |
13 |
|
iccssioo2 |
⊢ ( ( 𝑀 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑁 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
14 |
1 2 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
15 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
16 |
|
fnfvelrn |
⊢ ( ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ran ( ℝ D 𝐹 ) ) |
17 |
12 15 16
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ran ( ℝ D 𝐹 ) ) |
18 |
|
eleq1 |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ran ( ℝ D 𝐹 ) ↔ 𝐶 ∈ ran ( ℝ D 𝐹 ) ) ) |
19 |
17 18
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ran ( ℝ D 𝐹 ) ) ) |
20 |
19
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ran ( ℝ D 𝐹 ) ) ) |
21 |
8 20
|
mpd |
⊢ ( 𝜑 → 𝐶 ∈ ran ( ℝ D 𝐹 ) ) |