Step |
Hyp |
Ref |
Expression |
1 |
|
dvle.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
2 |
|
dvle.n |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
3 |
|
dvle.a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
4 |
|
dvle.b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
5 |
|
dvle.c |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
6 |
|
dvle.d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) ) |
7 |
|
dvle.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ≤ 𝐷 ) |
8 |
|
dvle.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑀 [,] 𝑁 ) ) |
9 |
|
dvle.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑀 [,] 𝑁 ) ) |
10 |
|
dvle.l |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
11 |
|
dvle.p |
⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝑃 ) |
12 |
|
dvle.q |
⊢ ( 𝑥 = 𝑋 → 𝐶 = 𝑄 ) |
13 |
|
dvle.r |
⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝑅 ) |
14 |
|
dvle.s |
⊢ ( 𝑥 = 𝑌 → 𝐶 = 𝑆 ) |
15 |
13
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ ) ) |
16 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) |
19 |
18
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
20 |
17 19
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
21 |
15 20 9
|
rspcdva |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
22 |
14
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ ) ) |
23 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) |
26 |
25
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐶 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
27 |
24 26
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐶 ∈ ℝ ) |
28 |
22 27 9
|
rspcdva |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
29 |
12
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( 𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ ) ) |
30 |
29 27 8
|
rspcdva |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
31 |
28 30
|
resubcld |
⊢ ( 𝜑 → ( 𝑆 − 𝑄 ) ∈ ℝ ) |
32 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ ) ) |
33 |
32 20 8
|
rspcdva |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
34 |
21
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
35 |
30
|
recnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
36 |
28
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
37 |
35 36
|
subcld |
⊢ ( 𝜑 → ( 𝑄 − 𝑆 ) ∈ ℂ ) |
38 |
34 37
|
addcomd |
⊢ ( 𝜑 → ( 𝑅 + ( 𝑄 − 𝑆 ) ) = ( ( 𝑄 − 𝑆 ) + 𝑅 ) ) |
39 |
34 36 35
|
subsub2d |
⊢ ( 𝜑 → ( 𝑅 − ( 𝑆 − 𝑄 ) ) = ( 𝑅 + ( 𝑄 − 𝑆 ) ) ) |
40 |
35 36 34
|
subsubd |
⊢ ( 𝜑 → ( 𝑄 − ( 𝑆 − 𝑅 ) ) = ( ( 𝑄 − 𝑆 ) + 𝑅 ) ) |
41 |
38 39 40
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑅 − ( 𝑆 − 𝑄 ) ) = ( 𝑄 − ( 𝑆 − 𝑅 ) ) ) |
42 |
28 21
|
resubcld |
⊢ ( 𝜑 → ( 𝑆 − 𝑅 ) ∈ ℝ ) |
43 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
44 |
43
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
45 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
46 |
|
resubcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐶 − 𝐴 ) ∈ ℝ ) |
47 |
43 44 5 3 45 46
|
cncfmpt2ss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
48 |
45
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
49 |
|
iccssre |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
50 |
1 2 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
51 |
24
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐶 ∈ ℝ ) |
52 |
17
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
53 |
51 52
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐶 − 𝐴 ) ∈ ℝ ) |
54 |
53
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
55 |
43
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
56 |
|
iccntr |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) |
57 |
1 2 56
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) |
58 |
48 50 54 55 43 57
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) ) |
59 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
60 |
59
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
61 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
62 |
61
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
63 |
51
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐶 ∈ ℂ ) |
64 |
62 63
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℂ ) |
65 |
|
lerel |
⊢ Rel ≤ |
66 |
65
|
brrelex2i |
⊢ ( 𝐵 ≤ 𝐷 → 𝐷 ∈ V ) |
67 |
7 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐷 ∈ V ) |
68 |
52
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℂ ) |
69 |
62 68
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℂ ) |
70 |
65
|
brrelex1i |
⊢ ( 𝐵 ≤ 𝐷 → 𝐵 ∈ V ) |
71 |
7 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ V ) |
72 |
60 64 67 6 69 71 4
|
dvmptsub |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐷 − 𝐵 ) ) ) |
73 |
58 72
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ ( 𝐷 − 𝐵 ) ) ) |
74 |
62 51
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℝ ) |
75 |
74
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
76 |
|
ioossre |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ |
77 |
|
dvfre |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) ⟶ ℝ ) |
78 |
75 76 77
|
sylancl |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) ⟶ ℝ ) |
79 |
6
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) ) |
80 |
67
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐷 ∈ V ) |
81 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐷 ∈ V → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) = ( 𝑀 (,) 𝑁 ) ) |
82 |
80 81
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) = ( 𝑀 (,) 𝑁 ) ) |
83 |
79 82
|
eqtrd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) = ( 𝑀 (,) 𝑁 ) ) |
84 |
6 83
|
feq12d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
85 |
78 84
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐷 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
86 |
85
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐷 ∈ ℝ ) |
87 |
62 52
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
88 |
87
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
89 |
|
dvfre |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
90 |
88 76 89
|
sylancl |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
91 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
92 |
71
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ V ) |
93 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ V → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
94 |
92 93
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
95 |
91 94
|
eqtrd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
96 |
4 95
|
feq12d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
97 |
90 96
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
98 |
97
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ ℝ ) |
99 |
86 98
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → ( 𝐷 − 𝐵 ) ∈ ℝ ) |
100 |
86 98
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → ( 0 ≤ ( 𝐷 − 𝐵 ) ↔ 𝐵 ≤ 𝐷 ) ) |
101 |
7 100
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 0 ≤ ( 𝐷 − 𝐵 ) ) |
102 |
|
elrege0 |
⊢ ( ( 𝐷 − 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐷 − 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐷 − 𝐵 ) ) ) |
103 |
99 101 102
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → ( 𝐷 − 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
104 |
73 103
|
fmpt3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ) : ( 𝑀 (,) 𝑁 ) ⟶ ( 0 [,) +∞ ) ) |
105 |
1 2 47 104 8 9 10
|
dvge0 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑋 ) ≤ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑌 ) ) |
106 |
12 11
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝐶 − 𝐴 ) = ( 𝑄 − 𝑃 ) ) |
107 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) |
108 |
|
ovex |
⊢ ( 𝐶 − 𝐴 ) ∈ V |
109 |
106 107 108
|
fvmpt3i |
⊢ ( 𝑋 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑋 ) = ( 𝑄 − 𝑃 ) ) |
110 |
8 109
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑋 ) = ( 𝑄 − 𝑃 ) ) |
111 |
14 13
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( 𝐶 − 𝐴 ) = ( 𝑆 − 𝑅 ) ) |
112 |
111 107 108
|
fvmpt3i |
⊢ ( 𝑌 ∈ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑌 ) = ( 𝑆 − 𝑅 ) ) |
113 |
9 112
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 𝐶 − 𝐴 ) ) ‘ 𝑌 ) = ( 𝑆 − 𝑅 ) ) |
114 |
105 110 113
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑄 − 𝑃 ) ≤ ( 𝑆 − 𝑅 ) ) |
115 |
30 33 42 114
|
subled |
⊢ ( 𝜑 → ( 𝑄 − ( 𝑆 − 𝑅 ) ) ≤ 𝑃 ) |
116 |
41 115
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑅 − ( 𝑆 − 𝑄 ) ) ≤ 𝑃 ) |
117 |
21 31 33 116
|
subled |
⊢ ( 𝜑 → ( 𝑅 − 𝑃 ) ≤ ( 𝑆 − 𝑄 ) ) |