Metamath Proof Explorer


Theorem dvlem

Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvlem.1 ( 𝜑𝐹 : 𝐷 ⟶ ℂ )
dvlem.2 ( 𝜑𝐷 ⊆ ℂ )
dvlem.3 ( 𝜑𝐵𝐷 )
Assertion dvlem ( ( 𝜑𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) / ( 𝐴𝐵 ) ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 dvlem.1 ( 𝜑𝐹 : 𝐷 ⟶ ℂ )
2 dvlem.2 ( 𝜑𝐷 ⊆ ℂ )
3 dvlem.3 ( 𝜑𝐵𝐷 )
4 eldifsn ( 𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ↔ ( 𝐴𝐷𝐴𝐵 ) )
5 1 adantr ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → 𝐹 : 𝐷 ⟶ ℂ )
6 simprl ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → 𝐴𝐷 )
7 5 6 ffvelrnd ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → ( 𝐹𝐴 ) ∈ ℂ )
8 3 adantr ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → 𝐵𝐷 )
9 5 8 ffvelrnd ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → ( 𝐹𝐵 ) ∈ ℂ )
10 7 9 subcld ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) ∈ ℂ )
11 2 adantr ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → 𝐷 ⊆ ℂ )
12 11 6 sseldd ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → 𝐴 ∈ ℂ )
13 11 8 sseldd ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → 𝐵 ∈ ℂ )
14 12 13 subcld ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → ( 𝐴𝐵 ) ∈ ℂ )
15 simprr ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → 𝐴𝐵 )
16 12 13 15 subne0d ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → ( 𝐴𝐵 ) ≠ 0 )
17 10 14 16 divcld ( ( 𝜑 ∧ ( 𝐴𝐷𝐴𝐵 ) ) → ( ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) / ( 𝐴𝐵 ) ) ∈ ℂ )
18 4 17 sylan2b ( ( 𝜑𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) / ( 𝐴𝐵 ) ) ∈ ℂ )