Step |
Hyp |
Ref |
Expression |
1 |
|
dvlem.1 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
2 |
|
dvlem.2 |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
3 |
|
dvlem.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
4 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ 𝐷 ) |
7 |
5 6
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ 𝐷 ) |
9 |
5 8
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
10 |
7 9
|
subcld |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐷 ⊆ ℂ ) |
12 |
11 6
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ ℂ ) |
13 |
11 8
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ ℂ ) |
14 |
12 13
|
subcld |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
15 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
16 |
12 13 15
|
subne0d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 − 𝐵 ) ≠ 0 ) |
17 |
10 14 16
|
divcld |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
18 |
4 17
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |