| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvlip.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
dvlip.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
dvlip.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 4 |
|
dvlip.d |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 5 |
|
dvlip.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 6 |
|
dvlip.l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑎 = 𝑌 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑎 = 𝑌 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑎 = 𝑌 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑌 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑎 = 𝑌 → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑌 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑎 = 𝑌 → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) |
| 13 |
9 12
|
breq12d |
⊢ ( 𝑎 = 𝑌 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑏 = 𝑋 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 16 |
15
|
fvoveq1d |
⊢ ( 𝑏 = 𝑋 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 17 |
|
fvoveq1 |
⊢ ( 𝑏 = 𝑋 → ( abs ‘ ( 𝑏 − 𝑌 ) ) = ( abs ‘ ( 𝑋 − 𝑌 ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑏 = 𝑋 → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) |
| 19 |
16 18
|
breq12d |
⊢ ( 𝑏 = 𝑋 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 23 |
21 22
|
oveqan12d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) |
| 24 |
23
|
fveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 25 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( 𝑦 − 𝑥 ) = ( 𝑏 − 𝑎 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) = ( abs ‘ ( 𝑏 − 𝑎 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 28 |
24 27
|
breq12d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 29 |
28
|
ancoms |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 32 |
30 31
|
oveqan12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 34 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑦 − 𝑥 ) = ( 𝑎 − 𝑏 ) ) |
| 35 |
34
|
fveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) |
| 37 |
33 36
|
breq12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
| 38 |
37
|
ancoms |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
| 39 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 40 |
1 2 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 41 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 42 |
3 41
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 43 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 44 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
| 45 |
43 44
|
anim12dan |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) ) |
| 46 |
42 45
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) ) |
| 47 |
46
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
| 48 |
46
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 49 |
47 48
|
abssubd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 50 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 51 |
40 50
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 52 |
51
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑏 ∈ ℂ ) |
| 53 |
52
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑏 ∈ ℂ ) |
| 54 |
51
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑎 ∈ ℂ ) |
| 55 |
54
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑎 ∈ ℂ ) |
| 56 |
53 55
|
abssubd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) |
| 58 |
49 57
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
| 59 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 60 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 61 |
59 60
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
| 62 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 63 |
59 62
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 64 |
61 63
|
subeq0ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = 0 ↔ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 65 |
64
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = 0 ) |
| 66 |
65
|
abs00bd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = 0 ) |
| 67 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 68 |
67 62
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℝ ) |
| 69 |
68
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℝ* ) |
| 70 |
67 60
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℝ ) |
| 71 |
70
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℝ* ) |
| 72 |
|
ioon0 |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) |
| 73 |
69 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) |
| 74 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 𝑀 ∈ ℝ ) |
| 75 |
70 68
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
| 77 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ∈ ℝ ) |
| 78 |
77
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ∈ ℝ* ) |
| 79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐵 ∈ ℝ ) |
| 80 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) ) |
| 81 |
77 79 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) ) |
| 82 |
62 81
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) |
| 83 |
82
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ≤ 𝑎 ) |
| 84 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑎 ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝑏 ) ) |
| 85 |
78 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝑏 ) ) |
| 86 |
79
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐵 ∈ ℝ* ) |
| 87 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) ) |
| 88 |
77 79 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) ) |
| 89 |
60 88
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) |
| 90 |
89
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ≤ 𝐵 ) |
| 91 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑏 ≤ 𝐵 ) → ( 𝐴 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 92 |
86 90 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐴 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 93 |
85 92
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 94 |
|
ssn0 |
⊢ ( ( ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 95 |
93 94
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 96 |
|
n0 |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 97 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
| 98 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
| 99 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 100 |
98 99
|
mpbii |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 101 |
100
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 102 |
101
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 103 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑀 ∈ ℝ ) |
| 104 |
101
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 105 |
97 102 103 104 6
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ 𝑀 ) |
| 106 |
105
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 0 ≤ 𝑀 ) ) |
| 107 |
106
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 0 ≤ 𝑀 ) ) |
| 108 |
107
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ 𝑀 ) |
| 109 |
96 108
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
| 110 |
109
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
| 111 |
95 110
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
| 112 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ≤ 𝑏 ) |
| 113 |
70 68
|
subge0d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 0 ≤ ( 𝑏 − 𝑎 ) ↔ 𝑎 ≤ 𝑏 ) ) |
| 114 |
112 113
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑏 − 𝑎 ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ ( 𝑏 − 𝑎 ) ) |
| 116 |
74 76 111 115
|
mulge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 117 |
116
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 118 |
73 117
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 < 𝑏 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 119 |
70
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℂ ) |
| 120 |
68
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℂ ) |
| 121 |
119 120
|
subeq0ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 ↔ 𝑏 = 𝑎 ) ) |
| 122 |
|
equcom |
⊢ ( 𝑏 = 𝑎 ↔ 𝑎 = 𝑏 ) |
| 123 |
121 122
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 124 |
|
0re |
⊢ 0 ∈ ℝ |
| 125 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑀 ∈ ℝ ) |
| 126 |
125
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑀 ∈ ℂ ) |
| 127 |
126
|
mul01d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑀 · 0 ) = 0 ) |
| 128 |
127
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 = ( 𝑀 · 0 ) ) |
| 129 |
|
eqle |
⊢ ( ( 0 ∈ ℝ ∧ 0 = ( 𝑀 · 0 ) ) → 0 ≤ ( 𝑀 · 0 ) ) |
| 130 |
124 128 129
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑀 · 0 ) ) |
| 131 |
|
oveq2 |
⊢ ( ( 𝑏 − 𝑎 ) = 0 → ( 𝑀 · ( 𝑏 − 𝑎 ) ) = ( 𝑀 · 0 ) ) |
| 132 |
131
|
breq2d |
⊢ ( ( 𝑏 − 𝑎 ) = 0 → ( 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ↔ 0 ≤ ( 𝑀 · 0 ) ) ) |
| 133 |
130 132
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 134 |
123 133
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 = 𝑏 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 135 |
68 70
|
leloed |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ) ) ) |
| 136 |
112 135
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ) ) |
| 137 |
118 134 136
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 139 |
66 138
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 140 |
61 63
|
subcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 142 |
141
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ) |
| 143 |
142
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 144 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
| 145 |
144
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
| 146 |
136
|
ord |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ¬ 𝑎 < 𝑏 → 𝑎 = 𝑏 ) ) |
| 147 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 148 |
147
|
eqcomd |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 149 |
146 148
|
syl6 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ¬ 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 150 |
149
|
necon1ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) → 𝑎 < 𝑏 ) ) |
| 151 |
150
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑎 < 𝑏 ) |
| 152 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑎 ∈ ℝ ) |
| 153 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑏 ∈ ℝ ) |
| 154 |
152 153
|
posdifd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 < 𝑏 ↔ 0 < ( 𝑏 − 𝑎 ) ) ) |
| 155 |
151 154
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 0 < ( 𝑏 − 𝑎 ) ) |
| 156 |
155
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ≠ 0 ) |
| 157 |
143 145 156
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) = ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 158 |
|
iccss2 |
⊢ ( ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 159 |
62 60 158
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 161 |
160
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 162 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 163 |
162
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 164 |
161 163
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 165 |
140
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 166 |
64
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ↔ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ) |
| 167 |
166
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
| 168 |
167
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
| 169 |
164 165 168
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 170 |
162 160
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 171 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 172 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 173 |
164 170 171 172
|
fmptco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 174 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
| 175 |
174
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ : ℂ ⟶ ℝ ) |
| 176 |
175
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ = ( 𝑥 ∈ ℂ ↦ ( ℜ ‘ 𝑥 ) ) ) |
| 177 |
|
fveq2 |
⊢ ( 𝑥 = ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 178 |
169 173 176 177
|
fmptco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ∘ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 179 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 180 |
|
rescncf |
⊢ ( ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) ) |
| 181 |
159 179 180
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
| 182 |
181
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
| 183 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 184 |
183
|
divccncf |
⊢ ( ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 185 |
141 167 184
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 186 |
182 185
|
cncfco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
| 187 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
| 188 |
187
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ ∈ ( ℂ –cn→ ℝ ) ) |
| 189 |
186 188
|
cncfco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ∘ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℝ ) ) |
| 190 |
178 189
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℝ ) ) |
| 191 |
50
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℝ ⊆ ℂ ) |
| 192 |
|
iccssre |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ ) |
| 193 |
152 153 192
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ ) |
| 194 |
169
|
recld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 195 |
194
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℂ ) |
| 196 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 197 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 198 |
|
iccntr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 199 |
68 70 198
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 200 |
199
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 201 |
191 193 195 196 197 200
|
dvmptntr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ) |
| 202 |
|
ioossicc |
⊢ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑎 [,] 𝑏 ) |
| 203 |
202
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 204 |
203 169
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 205 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ V ) |
| 206 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 207 |
206
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 208 |
203 164
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 209 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 210 |
209
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 211 |
100
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 212 |
211
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
| 213 |
210 212
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
| 214 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 215 |
|
ioossre |
⊢ ( 𝑎 (,) 𝑏 ) ⊆ ℝ |
| 216 |
215
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ℝ ) |
| 217 |
197 196
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝑎 (,) 𝑏 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) ) |
| 218 |
191 162 214 216 217
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) ) |
| 219 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 220 |
|
iooretop |
⊢ ( 𝑎 (,) 𝑏 ) ∈ ( topGen ‘ ran (,) ) |
| 221 |
|
isopn3i |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝑎 (,) 𝑏 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 222 |
219 220 221
|
mp2an |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) |
| 223 |
222
|
reseq2i |
⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) |
| 224 |
218 223
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ) |
| 225 |
202 160
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 226 |
162 225
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 227 |
226
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 228 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 229 |
228 93
|
fssresd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) : ( 𝑎 (,) 𝑏 ) ⟶ ℂ ) |
| 230 |
229
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) ) |
| 231 |
230
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) ) |
| 232 |
|
fvres |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
| 233 |
232
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
| 234 |
231 233
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 235 |
224 227 234
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 236 |
207 208 213 235 141 167
|
dvmptdivc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 237 |
204 205 236
|
dvmptre |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 238 |
201 237
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 239 |
238
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → dom ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 240 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V → dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 241 |
|
fvex |
⊢ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
| 242 |
241
|
a1i |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V ) |
| 243 |
240 242
|
mprg |
⊢ dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) |
| 244 |
239 243
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → dom ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 245 |
152 153 151 190 244
|
mvth |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) |
| 246 |
238
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑥 ) ) |
| 247 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 248 |
247
|
fvoveq1d |
⊢ ( 𝑦 = 𝑥 → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 249 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 250 |
|
fvex |
⊢ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
| 251 |
248 249 250
|
fvmpt |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑥 ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 252 |
246 251
|
sylan9eq |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 253 |
|
ubicc2 |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 254 |
69 71 112 253
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 255 |
254
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 256 |
21
|
fvoveq1d |
⊢ ( 𝑦 = 𝑏 → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 257 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 258 |
|
fvex |
⊢ ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
| 259 |
256 257 258
|
fvmpt |
⊢ ( 𝑏 ∈ ( 𝑎 [,] 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 260 |
255 259
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 261 |
|
lbicc2 |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑎 ≤ 𝑏 ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 262 |
69 71 112 261
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 263 |
262
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 264 |
30
|
fvoveq1d |
⊢ ( 𝑦 = 𝑎 → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 265 |
|
fvex |
⊢ ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
| 266 |
264 257 265
|
fvmpt |
⊢ ( 𝑎 ∈ ( 𝑎 [,] 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 267 |
263 266
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 268 |
260 267
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) = ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 269 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
| 270 |
269 141 167
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 271 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 272 |
271 141 167
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 273 |
270 272
|
resubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 274 |
269 271 141 167
|
divsubdird |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 275 |
141 167
|
dividd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = 1 ) |
| 276 |
274 275
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = 1 ) |
| 277 |
276
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( ℜ ‘ 1 ) ) |
| 278 |
|
re1 |
⊢ ( ℜ ‘ 1 ) = 1 |
| 279 |
277 278
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
| 280 |
273 279
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
| 281 |
280
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
| 282 |
268 281
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) = 1 ) |
| 283 |
282
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) |
| 284 |
252 283
|
eqeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ↔ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) ) |
| 285 |
284
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ↔ ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) ) |
| 286 |
245 285
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) |
| 287 |
209
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 288 |
211
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 289 |
287 288
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 290 |
140
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 291 |
167
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
| 292 |
289 290 291
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 293 |
292
|
recld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 294 |
142
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ) |
| 295 |
293 294
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 296 |
289
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 297 |
125
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑀 ∈ ℝ ) |
| 298 |
292
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 299 |
141
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 300 |
299
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 301 |
292
|
releabsd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 302 |
293 298 294 300 301
|
lemul1ad |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 303 |
292 290
|
absmuld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 304 |
289 290 291
|
divcan1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 305 |
304
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 306 |
303 305
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 307 |
302 306
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 308 |
6
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
| 309 |
287 308
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
| 310 |
295 296 297 307 309
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) |
| 311 |
|
oveq1 |
⊢ ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 312 |
311
|
breq1d |
⊢ ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ↔ ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
| 313 |
310 312
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
| 314 |
313
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
| 315 |
286 314
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) |
| 316 |
157 315
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ) |
| 317 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑀 ∈ ℝ ) |
| 318 |
|
ledivmul2 |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ( 𝑏 − 𝑎 ) ∈ ℝ ∧ 0 < ( 𝑏 − 𝑎 ) ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 319 |
142 317 144 155 318
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 320 |
316 319
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 321 |
139 320
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 322 |
68 70 112
|
abssubge0d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( 𝑏 − 𝑎 ) ) |
| 323 |
322
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 324 |
321 323
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 325 |
29 38 40 58 324
|
wlogle |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 326 |
325
|
expcom |
⊢ ( ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 327 |
14 20 326
|
vtocl2ga |
⊢ ( ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
| 328 |
327
|
ancoms |
⊢ ( ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
| 329 |
328
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) |