Step |
Hyp |
Ref |
Expression |
1 |
|
dvlip.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvlip.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvlip.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
4 |
|
dvlip.d |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
5 |
|
dvlip.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
6 |
|
dvlip.l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
7 |
|
fveq2 |
⊢ ( 𝑎 = 𝑌 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑌 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑎 = 𝑌 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑎 = 𝑌 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑌 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑎 = 𝑌 → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑌 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑎 = 𝑌 → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) |
13 |
9 12
|
breq12d |
⊢ ( 𝑎 = 𝑌 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑏 = 𝑋 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑋 ) ) |
16 |
15
|
fvoveq1d |
⊢ ( 𝑏 = 𝑋 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ) |
17 |
|
fvoveq1 |
⊢ ( 𝑏 = 𝑋 → ( abs ‘ ( 𝑏 − 𝑌 ) ) = ( abs ‘ ( 𝑋 − 𝑌 ) ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑏 = 𝑋 → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) |
19 |
16 18
|
breq12d |
⊢ ( 𝑏 = 𝑋 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑏 = 𝑋 → ( ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
23 |
21 22
|
oveqan12d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
25 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( 𝑦 − 𝑥 ) = ( 𝑏 − 𝑎 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) = ( abs ‘ ( 𝑏 − 𝑎 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
28 |
24 27
|
breq12d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
29 |
28
|
ancoms |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑏 ) ) |
32 |
30 31
|
oveqan12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ) |
34 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑦 − 𝑥 ) = ( 𝑎 − 𝑏 ) ) |
35 |
34
|
fveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
36 |
35
|
oveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) |
37 |
33 36
|
breq12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
38 |
37
|
ancoms |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
39 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
40 |
1 2 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
41 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
42 |
3 41
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
43 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
44 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
45 |
43 44
|
anim12dan |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) ) |
46 |
42 45
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) ) |
47 |
46
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
48 |
46
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
49 |
47 48
|
abssubd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ) |
50 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
51 |
40 50
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
52 |
51
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑏 ∈ ℂ ) |
53 |
52
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑏 ∈ ℂ ) |
54 |
51
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑎 ∈ ℂ ) |
55 |
54
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑎 ∈ ℂ ) |
56 |
53 55
|
abssubd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
57 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) |
58 |
49 57
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
59 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
60 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) |
61 |
59 60
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
62 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) |
63 |
59 62
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
64 |
61 63
|
subeq0ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = 0 ↔ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
65 |
64
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = 0 ) |
66 |
65
|
abs00bd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = 0 ) |
67 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
68 |
67 62
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℝ ) |
69 |
68
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℝ* ) |
70 |
67 60
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℝ ) |
71 |
70
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℝ* ) |
72 |
|
ioon0 |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) |
73 |
69 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) |
74 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 𝑀 ∈ ℝ ) |
75 |
70 68
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
77 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ∈ ℝ ) |
78 |
77
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ∈ ℝ* ) |
79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐵 ∈ ℝ ) |
80 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) ) |
81 |
77 79 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) ) |
82 |
62 81
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) |
83 |
82
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ≤ 𝑎 ) |
84 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑎 ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝑏 ) ) |
85 |
78 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝑏 ) ) |
86 |
79
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐵 ∈ ℝ* ) |
87 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) ) |
88 |
77 79 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) ) |
89 |
60 88
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) |
90 |
89
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ≤ 𝐵 ) |
91 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑏 ≤ 𝐵 ) → ( 𝐴 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
92 |
86 90 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐴 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
93 |
85 92
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
94 |
|
ssn0 |
⊢ ( ( ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
95 |
93 94
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
96 |
|
n0 |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
97 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
98 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
99 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
100 |
98 99
|
mpbii |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
101 |
100
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
102 |
101
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
103 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑀 ∈ ℝ ) |
104 |
101
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
105 |
97 102 103 104 6
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ 𝑀 ) |
106 |
105
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 0 ≤ 𝑀 ) ) |
107 |
106
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 0 ≤ 𝑀 ) ) |
108 |
107
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ 𝑀 ) |
109 |
96 108
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
110 |
109
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
111 |
95 110
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
112 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ≤ 𝑏 ) |
113 |
70 68
|
subge0d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 0 ≤ ( 𝑏 − 𝑎 ) ↔ 𝑎 ≤ 𝑏 ) ) |
114 |
112 113
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑏 − 𝑎 ) ) |
115 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ ( 𝑏 − 𝑎 ) ) |
116 |
74 76 111 115
|
mulge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
117 |
116
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
118 |
73 117
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 < 𝑏 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
119 |
70
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℂ ) |
120 |
68
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℂ ) |
121 |
119 120
|
subeq0ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 ↔ 𝑏 = 𝑎 ) ) |
122 |
|
equcom |
⊢ ( 𝑏 = 𝑎 ↔ 𝑎 = 𝑏 ) |
123 |
121 122
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
124 |
|
0re |
⊢ 0 ∈ ℝ |
125 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑀 ∈ ℝ ) |
126 |
125
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑀 ∈ ℂ ) |
127 |
126
|
mul01d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑀 · 0 ) = 0 ) |
128 |
127
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 = ( 𝑀 · 0 ) ) |
129 |
|
eqle |
⊢ ( ( 0 ∈ ℝ ∧ 0 = ( 𝑀 · 0 ) ) → 0 ≤ ( 𝑀 · 0 ) ) |
130 |
124 128 129
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑀 · 0 ) ) |
131 |
|
oveq2 |
⊢ ( ( 𝑏 − 𝑎 ) = 0 → ( 𝑀 · ( 𝑏 − 𝑎 ) ) = ( 𝑀 · 0 ) ) |
132 |
131
|
breq2d |
⊢ ( ( 𝑏 − 𝑎 ) = 0 → ( 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ↔ 0 ≤ ( 𝑀 · 0 ) ) ) |
133 |
130 132
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
134 |
123 133
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 = 𝑏 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
135 |
68 70
|
leloed |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ) ) ) |
136 |
112 135
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ) ) |
137 |
118 134 136
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
139 |
66 138
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
140 |
61 63
|
subcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
142 |
141
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ) |
143 |
142
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
144 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
145 |
144
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
146 |
136
|
ord |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ¬ 𝑎 < 𝑏 → 𝑎 = 𝑏 ) ) |
147 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
148 |
147
|
eqcomd |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
149 |
146 148
|
syl6 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ¬ 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
150 |
149
|
necon1ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) → 𝑎 < 𝑏 ) ) |
151 |
150
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑎 < 𝑏 ) |
152 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑎 ∈ ℝ ) |
153 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑏 ∈ ℝ ) |
154 |
152 153
|
posdifd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 < 𝑏 ↔ 0 < ( 𝑏 − 𝑎 ) ) ) |
155 |
151 154
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 0 < ( 𝑏 − 𝑎 ) ) |
156 |
155
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ≠ 0 ) |
157 |
143 145 156
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) = ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
158 |
|
iccss2 |
⊢ ( ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
159 |
62 60 158
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
161 |
160
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
162 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
163 |
162
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
164 |
161 163
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
165 |
140
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
166 |
64
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ↔ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ) |
167 |
166
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
168 |
167
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
169 |
164 165 168
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
170 |
162 160
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
171 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
172 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
173 |
164 170 171 172
|
fmptco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
174 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
175 |
174
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ : ℂ ⟶ ℝ ) |
176 |
175
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ = ( 𝑥 ∈ ℂ ↦ ( ℜ ‘ 𝑥 ) ) ) |
177 |
|
fveq2 |
⊢ ( 𝑥 = ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
178 |
169 173 176 177
|
fmptco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ∘ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
179 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
180 |
|
rescncf |
⊢ ( ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) ) |
181 |
159 179 180
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
182 |
181
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
183 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
184 |
183
|
divccncf |
⊢ ( ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
185 |
141 167 184
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
186 |
182 185
|
cncfco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
187 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
188 |
187
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ ∈ ( ℂ –cn→ ℝ ) ) |
189 |
186 188
|
cncfco |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ∘ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℝ ) ) |
190 |
178 189
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℝ ) ) |
191 |
50
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℝ ⊆ ℂ ) |
192 |
|
iccssre |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ ) |
193 |
152 153 192
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ ) |
194 |
169
|
recld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
195 |
194
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℂ ) |
196 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
197 |
196
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
198 |
|
iccntr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
199 |
68 70 198
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
200 |
199
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
201 |
191 193 195 197 196 200
|
dvmptntr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ) |
202 |
|
ioossicc |
⊢ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑎 [,] 𝑏 ) |
203 |
202
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) |
204 |
203 169
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
205 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ V ) |
206 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
207 |
206
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℝ ∈ { ℝ , ℂ } ) |
208 |
203 164
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
209 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
210 |
209
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
211 |
100
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
212 |
211
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
213 |
210 212
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
214 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
215 |
|
ioossre |
⊢ ( 𝑎 (,) 𝑏 ) ⊆ ℝ |
216 |
215
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ℝ ) |
217 |
196 197
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝑎 (,) 𝑏 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) ) |
218 |
191 162 214 216 217
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) ) |
219 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
220 |
|
iooretop |
⊢ ( 𝑎 (,) 𝑏 ) ∈ ( topGen ‘ ran (,) ) |
221 |
|
isopn3i |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝑎 (,) 𝑏 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
222 |
219 220 221
|
mp2an |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) |
223 |
222
|
reseq2i |
⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) |
224 |
218 223
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ) |
225 |
202 160
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
226 |
162 225
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
227 |
226
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
228 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
229 |
228 93
|
fssresd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) : ( 𝑎 (,) 𝑏 ) ⟶ ℂ ) |
230 |
229
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) ) |
231 |
230
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) ) |
232 |
|
fvres |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
233 |
232
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
234 |
231 233
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
235 |
224 227 234
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
236 |
207 208 213 235 141 167
|
dvmptdivc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
237 |
204 205 236
|
dvmptre |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
238 |
201 237
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
239 |
238
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → dom ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
240 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V → dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) ) |
241 |
|
fvex |
⊢ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
242 |
241
|
a1i |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V ) |
243 |
240 242
|
mprg |
⊢ dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) |
244 |
239 243
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → dom ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) ) |
245 |
152 153 151 190 244
|
mvth |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) |
246 |
238
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑥 ) ) |
247 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
248 |
247
|
fvoveq1d |
⊢ ( 𝑦 = 𝑥 → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
249 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
250 |
|
fvex |
⊢ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
251 |
248 249 250
|
fvmpt |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑥 ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
252 |
246 251
|
sylan9eq |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
253 |
|
ubicc2 |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
254 |
69 71 112 253
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
255 |
254
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
256 |
21
|
fvoveq1d |
⊢ ( 𝑦 = 𝑏 → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
257 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
258 |
|
fvex |
⊢ ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
259 |
256 257 258
|
fvmpt |
⊢ ( 𝑏 ∈ ( 𝑎 [,] 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
260 |
255 259
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
261 |
|
lbicc2 |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑎 ≤ 𝑏 ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
262 |
69 71 112 261
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
263 |
262
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
264 |
30
|
fvoveq1d |
⊢ ( 𝑦 = 𝑎 → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
265 |
|
fvex |
⊢ ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V |
266 |
264 257 265
|
fvmpt |
⊢ ( 𝑎 ∈ ( 𝑎 [,] 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
267 |
263 266
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
268 |
260 267
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) = ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
269 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
270 |
269 141 167
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
271 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
272 |
271 141 167
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
273 |
270 272
|
resubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
274 |
269 271 141 167
|
divsubdird |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
275 |
141 167
|
dividd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = 1 ) |
276 |
274 275
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = 1 ) |
277 |
276
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( ℜ ‘ 1 ) ) |
278 |
|
re1 |
⊢ ( ℜ ‘ 1 ) = 1 |
279 |
277 278
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
280 |
273 279
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
281 |
280
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
282 |
268 281
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) = 1 ) |
283 |
282
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) |
284 |
252 283
|
eqeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ↔ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) ) |
285 |
284
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ↔ ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) ) |
286 |
245 285
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) |
287 |
209
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
288 |
211
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
289 |
287 288
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
290 |
140
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
291 |
167
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
292 |
289 290 291
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
293 |
292
|
recld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
294 |
142
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ) |
295 |
293 294
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
296 |
289
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
297 |
125
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑀 ∈ ℝ ) |
298 |
292
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
299 |
141
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
300 |
299
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
301 |
292
|
releabsd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
302 |
293 298 294 300 301
|
lemul1ad |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
303 |
292 290
|
absmuld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
304 |
289 290 291
|
divcan1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
305 |
304
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
306 |
303 305
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
307 |
302 306
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
308 |
6
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
309 |
287 308
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
310 |
295 296 297 307 309
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) |
311 |
|
oveq1 |
⊢ ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
312 |
311
|
breq1d |
⊢ ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ↔ ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
313 |
310 312
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
314 |
313
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
315 |
286 314
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) |
316 |
157 315
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ) |
317 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑀 ∈ ℝ ) |
318 |
|
ledivmul2 |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ( 𝑏 − 𝑎 ) ∈ ℝ ∧ 0 < ( 𝑏 − 𝑎 ) ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
319 |
142 317 144 155 318
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
320 |
316 319
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
321 |
139 320
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
322 |
68 70 112
|
abssubge0d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( 𝑏 − 𝑎 ) ) |
323 |
322
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
324 |
321 323
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
325 |
29 38 40 58 324
|
wlogle |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
326 |
325
|
expcom |
⊢ ( ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
327 |
14 20 326
|
vtocl2ga |
⊢ ( ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
328 |
327
|
ancoms |
⊢ ( ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
329 |
328
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) |