Step |
Hyp |
Ref |
Expression |
1 |
|
dvlog2.s |
⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
2 |
|
ssid |
⊢ ℂ ⊆ ℂ |
3 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
4 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
5 |
3 4
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
6 |
|
logrncn |
⊢ ( 𝑥 ∈ ran log → 𝑥 ∈ ℂ ) |
7 |
6
|
ssriv |
⊢ ran log ⊆ ℂ |
8 |
|
fss |
⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ran log ∧ ran log ⊆ ℂ ) → log : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
9 |
5 7 8
|
mp2an |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ℂ |
10 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
11 |
10
|
logdmss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) |
12 |
|
fssres |
⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ℂ ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) ⟶ ℂ ) |
13 |
9 11 12
|
mp2an |
⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) ⟶ ℂ |
14 |
|
difss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ |
15 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
17 |
|
1xr |
⊢ 1 ∈ ℝ* |
18 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
19 |
15 16 17 18
|
mp3an |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
20 |
1 19
|
eqsstri |
⊢ 𝑆 ⊆ ℂ |
21 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
22 |
21
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
23 |
22
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
24 |
21 23
|
dvres |
⊢ ( ( ( ℂ ⊆ ℂ ∧ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) ⟶ ℂ ) ∧ ( ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) ) → ( ℂ D ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) ) = ( ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ) ) |
25 |
2 13 14 20 24
|
mp4an |
⊢ ( ℂ D ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) ) = ( ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ) |
26 |
1
|
dvlog2lem |
⊢ 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
27 |
|
resabs1 |
⊢ ( 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) = ( log ↾ 𝑆 ) ) |
28 |
26 27
|
ax-mp |
⊢ ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) = ( log ↾ 𝑆 ) |
29 |
28
|
oveq2i |
⊢ ( ℂ D ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾ 𝑆 ) ) = ( ℂ D ( log ↾ 𝑆 ) ) |
30 |
10
|
dvlog |
⊢ ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) |
31 |
21
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
32 |
21
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
33 |
32
|
blopn |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) ) |
34 |
15 16 17 33
|
mp3an |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) |
35 |
1 34
|
eqeltri |
⊢ 𝑆 ∈ ( TopOpen ‘ ℂfld ) |
36 |
|
isopn3i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) = 𝑆 ) |
37 |
31 35 36
|
mp2an |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) = 𝑆 |
38 |
30 37
|
reseq12i |
⊢ ( ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ) = ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) |
39 |
25 29 38
|
3eqtr3i |
⊢ ( ℂ D ( log ↾ 𝑆 ) ) = ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) |
40 |
|
resmpt |
⊢ ( 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / 𝑥 ) ) ) |
41 |
26 40
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑥 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / 𝑥 ) ) |
42 |
39 41
|
eqtri |
⊢ ( ℂ D ( log ↾ 𝑆 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / 𝑥 ) ) |