| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvlog2.s | ⊢ 𝑆  =  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 ) | 
						
							| 2 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 5 |  | blssm | ⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  1  ∈  ℂ  ∧  1  ∈  ℝ* )  →  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ⊆  ℂ ) | 
						
							| 6 | 2 3 4 5 | mp3an | ⊢ ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ⊆  ℂ | 
						
							| 7 | 1 6 | eqsstri | ⊢ 𝑆  ⊆  ℂ | 
						
							| 8 | 7 | sseli | ⊢ ( 𝑥  ∈  𝑆  →  𝑥  ∈  ℂ ) | 
						
							| 9 |  | 1red | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  1  ∈  ℝ ) | 
						
							| 10 |  | cnmet | ⊢ ( abs  ∘   −  )  ∈  ( Met ‘ ℂ ) | 
						
							| 11 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 12 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 13 |  | iocssre | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ )  →  ( -∞ (,] 0 )  ⊆  ℝ ) | 
						
							| 14 | 11 12 13 | mp2an | ⊢ ( -∞ (,] 0 )  ⊆  ℝ | 
						
							| 15 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 16 | 14 15 | sstri | ⊢ ( -∞ (,] 0 )  ⊆  ℂ | 
						
							| 17 | 16 | sseli | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  𝑥  ∈  ℂ ) | 
						
							| 18 |  | metcl | ⊢ ( ( ( abs  ∘   −  )  ∈  ( Met ‘ ℂ )  ∧  1  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 1 ( abs  ∘   −  ) 𝑥 )  ∈  ℝ ) | 
						
							| 19 | 10 3 17 18 | mp3an12i | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ( 1 ( abs  ∘   −  ) 𝑥 )  ∈  ℝ ) | 
						
							| 20 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 21 | 14 | sseli | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  𝑥  ∈  ℝ ) | 
						
							| 22 | 12 | a1i | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  0  ∈  ℝ ) | 
						
							| 23 |  | elioc2 | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ )  →  ( 𝑥  ∈  ( -∞ (,] 0 )  ↔  ( 𝑥  ∈  ℝ  ∧  -∞  <  𝑥  ∧  𝑥  ≤  0 ) ) ) | 
						
							| 24 | 11 12 23 | mp2an | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  ↔  ( 𝑥  ∈  ℝ  ∧  -∞  <  𝑥  ∧  𝑥  ≤  0 ) ) | 
						
							| 25 | 24 | simp3bi | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  𝑥  ≤  0 ) | 
						
							| 26 | 21 22 9 25 | lesub2dd | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ( 1  −  0 )  ≤  ( 1  −  𝑥 ) ) | 
						
							| 27 | 20 26 | eqbrtrrid | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  1  ≤  ( 1  −  𝑥 ) ) | 
						
							| 28 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 29 | 28 | cnmetdval | ⊢ ( ( 1  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 1 ( abs  ∘   −  ) 𝑥 )  =  ( abs ‘ ( 1  −  𝑥 ) ) ) | 
						
							| 30 | 3 17 29 | sylancr | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ( 1 ( abs  ∘   −  ) 𝑥 )  =  ( abs ‘ ( 1  −  𝑥 ) ) ) | 
						
							| 31 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 32 | 31 | a1i | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  0  ≤  1 ) | 
						
							| 33 | 21 22 9 25 32 | letrd | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  𝑥  ≤  1 ) | 
						
							| 34 | 21 9 33 | abssubge0d | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ( abs ‘ ( 1  −  𝑥 ) )  =  ( 1  −  𝑥 ) ) | 
						
							| 35 | 30 34 | eqtrd | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ( 1 ( abs  ∘   −  ) 𝑥 )  =  ( 1  −  𝑥 ) ) | 
						
							| 36 | 27 35 | breqtrrd | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  1  ≤  ( 1 ( abs  ∘   −  ) 𝑥 ) ) | 
						
							| 37 | 9 19 36 | lensymd | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ¬  ( 1 ( abs  ∘   −  ) 𝑥 )  <  1 ) | 
						
							| 38 | 2 | a1i | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) ) | 
						
							| 39 | 4 | a1i | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  1  ∈  ℝ* ) | 
						
							| 40 | 3 | a1i | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  1  ∈  ℂ ) | 
						
							| 41 |  | elbl2 | ⊢ ( ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  1  ∈  ℝ* )  ∧  ( 1  ∈  ℂ  ∧  𝑥  ∈  ℂ ) )  →  ( 𝑥  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 1 ( abs  ∘   −  ) 𝑥 )  <  1 ) ) | 
						
							| 42 | 38 39 40 17 41 | syl22anc | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ( 𝑥  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 1 ( abs  ∘   −  ) 𝑥 )  <  1 ) ) | 
						
							| 43 | 37 42 | mtbird | ⊢ ( 𝑥  ∈  ( -∞ (,] 0 )  →  ¬  𝑥  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) | 
						
							| 44 | 43 | con2i | ⊢ ( 𝑥  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  →  ¬  𝑥  ∈  ( -∞ (,] 0 ) ) | 
						
							| 45 | 44 1 | eleq2s | ⊢ ( 𝑥  ∈  𝑆  →  ¬  𝑥  ∈  ( -∞ (,] 0 ) ) | 
						
							| 46 | 8 45 | eldifd | ⊢ ( 𝑥  ∈  𝑆  →  𝑥  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 47 | 46 | ssriv | ⊢ 𝑆  ⊆  ( ℂ  ∖  ( -∞ (,] 0 ) ) |