Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvgt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvgt0.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvlt0.d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( -∞ (,) 0 ) ) |
5 |
|
gtso |
⊢ ◡ < Or ℝ |
6 |
1 2 3 4
|
dvgt0lem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( -∞ (,) 0 ) ) |
7 |
|
eliooord |
⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( -∞ (,) 0 ) → ( -∞ < ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ) ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( -∞ < ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ) ) |
9 |
8
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ) |
10 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
13 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
14 |
12 13
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
15 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
16 |
12 15
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
17 |
14 16
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
18 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 0 ∈ ℝ ) |
19 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
20 |
1 2 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
22 |
21 13
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
23 |
21 15
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
24 |
22 23
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
26 |
23 22
|
posdifd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 < 𝑦 ↔ 0 < ( 𝑦 − 𝑥 ) ) ) |
27 |
25 26
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( 𝑦 − 𝑥 ) ) |
28 |
|
ltdivmul |
⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( 𝑦 − 𝑥 ) ∈ ℝ ∧ 0 < ( 𝑦 − 𝑥 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ↔ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < ( ( 𝑦 − 𝑥 ) · 0 ) ) ) |
29 |
17 18 24 27 28
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ↔ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < ( ( 𝑦 − 𝑥 ) · 0 ) ) ) |
30 |
9 29
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < ( ( 𝑦 − 𝑥 ) · 0 ) ) |
31 |
24
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
32 |
31
|
mul01d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑦 − 𝑥 ) · 0 ) = 0 ) |
33 |
30 32
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < 0 ) |
34 |
14 16 18
|
ltsubaddd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < 0 ↔ ( 𝐹 ‘ 𝑦 ) < ( 0 + ( 𝐹 ‘ 𝑥 ) ) ) ) |
35 |
33 34
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) < ( 0 + ( 𝐹 ‘ 𝑥 ) ) ) |
36 |
16
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
37 |
36
|
addid2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
38 |
35 37
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) < ( 𝐹 ‘ 𝑥 ) ) |
39 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
40 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
41 |
39 40
|
brcnv |
⊢ ( ( 𝐹 ‘ 𝑥 ) ◡ < ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) < ( 𝐹 ‘ 𝑥 ) ) |
42 |
38 41
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ◡ < ( 𝐹 ‘ 𝑦 ) ) |
43 |
1 2 3 4 5 42
|
dvgt0lem2 |
⊢ ( 𝜑 → 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |