| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 5 |
|
dvmptadd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 6 |
|
dvmptadd.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) |
| 7 |
|
dvmptadd.dc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 8 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 9 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) : 𝑋 ⟶ ℂ ) |
| 10 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 11 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 12 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 14 |
10 13
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 15 |
7
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 16 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 ) |
| 17 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = 𝑋 ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = 𝑋 ) |
| 19 |
15 18
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = 𝑋 ) |
| 20 |
1 8 9 14 19
|
dvaddf |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f + ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) ) |
| 21 |
|
ovex |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ V |
| 22 |
21
|
dmex |
⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ V |
| 23 |
19 22
|
eqeltrrdi |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 24 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 25 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
| 26 |
23 2 5 24 25
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) ) |
| 28 |
23 3 6 4 7
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f + ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + 𝐷 ) ) ) |
| 29 |
20 27 28
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + 𝐷 ) ) ) |