Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
5 |
|
dvmptadd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
6 |
|
dvmptadd.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) |
7 |
|
dvmptadd.dc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
8 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
9 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) : 𝑋 ⟶ ℂ ) |
10 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
11 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
12 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
14 |
10 13
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
15 |
7
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
16 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 ) |
17 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = 𝑋 ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = 𝑋 ) |
19 |
15 18
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = 𝑋 ) |
20 |
1 8 9 14 19
|
dvaddf |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f + ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) ) |
21 |
|
ovex |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ V |
22 |
21
|
dmex |
⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ V |
23 |
19 22
|
eqeltrrdi |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
24 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
25 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
26 |
23 2 5 24 25
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) ) |
28 |
23 3 6 4 7
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f + ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + 𝐷 ) ) ) |
29 |
20 27 28
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + 𝐷 ) ) ) |