Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptid.1 |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptc.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
4 |
3
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
5 |
|
toponmax |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
6 |
4 5
|
mp1i |
⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
7 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
9 |
|
df-ss |
⊢ ( 𝑆 ⊆ ℂ ↔ ( 𝑆 ∩ ℂ ) = 𝑆 ) |
10 |
8 9
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∩ ℂ ) = 𝑆 ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
12 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℂ ) |
13 |
|
dvconst |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
15 |
|
fconstmpt |
⊢ ( ℂ × { 𝐴 } ) = ( 𝑥 ∈ ℂ ↦ 𝐴 ) |
16 |
15
|
oveq2i |
⊢ ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) |
17 |
|
fconstmpt |
⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) |
18 |
14 16 17
|
3eqtr3g |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
19 |
3 1 6 10 11 12 18
|
dvmptres3 |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |