| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptid.1 |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvmptc.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 4 |
3
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 5 |
|
toponmax |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 6 |
4 5
|
mp1i |
⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 7 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 9 |
|
dfss2 |
⊢ ( 𝑆 ⊆ ℂ ↔ ( 𝑆 ∩ ℂ ) = 𝑆 ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∩ ℂ ) = 𝑆 ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 12 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℂ ) |
| 13 |
|
dvconst |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 15 |
|
fconstmpt |
⊢ ( ℂ × { 𝐴 } ) = ( 𝑥 ∈ ℂ ↦ 𝐴 ) |
| 16 |
15
|
oveq2i |
⊢ ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) |
| 17 |
|
fconstmpt |
⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) |
| 18 |
14 16 17
|
3eqtr3g |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 19 |
3 1 6 10 11 12 18
|
dvmptres3 |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |