Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptcj.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
2 |
|
dvmptcj.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
dvmptcj.da |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
4 |
1
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
5 |
3
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
6 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
7 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
9 |
5 8
|
eqtrd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
10 |
|
dvbsss |
⊢ dom ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⊆ ℝ |
11 |
9 10
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
12 |
|
dvcj |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ∗ ∘ ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ) |
13 |
4 11 12
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ∗ ∘ ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ) |
14 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
15 |
14
|
a1i |
⊢ ( 𝜑 → ∗ : ℂ ⟶ ℂ ) |
16 |
15 1
|
cofmpt |
⊢ ( 𝜑 → ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) ) |
18 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
19 |
18
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
20 |
19 1 2 3
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
21 |
15
|
feqmptd |
⊢ ( 𝜑 → ∗ = ( 𝑦 ∈ ℂ ↦ ( ∗ ‘ 𝑦 ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ 𝐵 ) ) |
23 |
20 3 21 22
|
fmptco |
⊢ ( 𝜑 → ( ∗ ∘ ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐵 ) ) ) |
24 |
13 17 23
|
3eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐵 ) ) ) |