| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptcj.a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | dvmptcj.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | dvmptcj.da | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 4 | 1 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ℂ ) | 
						
							| 5 | 3 | dmeqd | ⊢ ( 𝜑  →  dom  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  dom  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 6 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 𝐵  ∈  𝑉 ) | 
						
							| 7 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝑋 𝐵  ∈  𝑉  →  dom  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  𝑋 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  𝑋 ) | 
						
							| 9 | 5 8 | eqtrd | ⊢ ( 𝜑  →  dom  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  𝑋 ) | 
						
							| 10 |  | dvbsss | ⊢ dom  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  ⊆  ℝ | 
						
							| 11 | 9 10 | eqsstrrdi | ⊢ ( 𝜑  →  𝑋  ⊆  ℝ ) | 
						
							| 12 |  | dvcj | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ℂ  ∧  𝑋  ⊆  ℝ )  →  ( ℝ  D  ( ∗  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) )  =  ( ∗  ∘  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ) ) | 
						
							| 13 | 4 11 12 | syl2anc | ⊢ ( 𝜑  →  ( ℝ  D  ( ∗  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) )  =  ( ∗  ∘  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ) ) | 
						
							| 14 |  | cjf | ⊢ ∗ : ℂ ⟶ ℂ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ∗ : ℂ ⟶ ℂ ) | 
						
							| 16 | 15 1 | cofmpt | ⊢ ( 𝜑  →  ( ∗  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  ( ∗  ∘  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) )  =  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 18 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 20 | 19 1 2 3 | dvmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  ℂ ) | 
						
							| 21 | 15 | feqmptd | ⊢ ( 𝜑  →  ∗  =  ( 𝑦  ∈  ℂ  ↦  ( ∗ ‘ 𝑦 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( ∗ ‘ 𝑦 )  =  ( ∗ ‘ 𝐵 ) ) | 
						
							| 23 | 20 3 21 22 | fmptco | ⊢ ( 𝜑  →  ( ∗  ∘  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ∗ ‘ 𝐵 ) ) ) | 
						
							| 24 | 13 17 23 | 3eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( ∗ ‘ 𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ∗ ‘ 𝐵 ) ) ) |