Metamath Proof Explorer


Theorem dvmptcl

Description: Closure lemma for dvmptcmul and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
Assertion dvmptcl ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
3 dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
4 dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
5 dvfg ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) : dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ⟶ ℂ )
6 1 5 syl ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) : dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ⟶ ℂ )
7 4 dmeqd ( 𝜑 → dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = dom ( 𝑥𝑋𝐵 ) )
8 3 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 𝐵𝑉 )
9 dmmptg ( ∀ 𝑥𝑋 𝐵𝑉 → dom ( 𝑥𝑋𝐵 ) = 𝑋 )
10 8 9 syl ( 𝜑 → dom ( 𝑥𝑋𝐵 ) = 𝑋 )
11 7 10 eqtrd ( 𝜑 → dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = 𝑋 )
12 11 feq2d ( 𝜑 → ( ( 𝑆 D ( 𝑥𝑋𝐴 ) ) : dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝑥𝑋𝐴 ) ) : 𝑋 ⟶ ℂ ) )
13 6 12 mpbid ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) : 𝑋 ⟶ ℂ )
14 4 feq1d ( 𝜑 → ( ( 𝑆 D ( 𝑥𝑋𝐴 ) ) : 𝑋 ⟶ ℂ ↔ ( 𝑥𝑋𝐵 ) : 𝑋 ⟶ ℂ ) )
15 13 14 mpbid ( 𝜑 → ( 𝑥𝑋𝐵 ) : 𝑋 ⟶ ℂ )
16 15 fvmptelrn ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ℂ )