Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
5 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⟶ ℂ ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⟶ ℂ ) |
7 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
8 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
9 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
11 |
7 10
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
12 |
11
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ) ) |
13 |
6 12
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ) |
14 |
4
|
feq1d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) ) |
15 |
13 14
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
16 |
15
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |