Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptconst.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptconst.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
dvmptconst.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
4 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
5 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℝ ) |
6 |
1 3
|
dvmptc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
7 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
8 |
7
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
11 |
|
sseq1 |
⊢ ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) ) |
12 |
10 11
|
mpbiri |
⊢ ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) |
13 |
|
eqimss |
⊢ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) |
14 |
12 13
|
pm3.2i |
⊢ ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) |
15 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
17 |
|
pm3.44 |
⊢ ( ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) → ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ ) ) |
18 |
14 16 17
|
mpsyl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
19 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
20 |
9 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
21 |
|
toponss |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) |
22 |
20 2 21
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
23 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
24 |
1 4 5 6 22 23 7 2
|
dvmptres |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |