| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptconst.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvmptconst.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | dvmptconst.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  0  ∈  ℝ ) | 
						
							| 6 | 1 3 | dvmptc | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑆  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝑆  ↦  0 ) ) | 
						
							| 7 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 8 | 7 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 10 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 11 |  | sseq1 | ⊢ ( 𝑆  =  ℝ  →  ( 𝑆  ⊆  ℂ  ↔  ℝ  ⊆  ℂ ) ) | 
						
							| 12 | 10 11 | mpbiri | ⊢ ( 𝑆  =  ℝ  →  𝑆  ⊆  ℂ ) | 
						
							| 13 |  | eqimss | ⊢ ( 𝑆  =  ℂ  →  𝑆  ⊆  ℂ ) | 
						
							| 14 | 12 13 | pm3.2i | ⊢ ( ( 𝑆  =  ℝ  →  𝑆  ⊆  ℂ )  ∧  ( 𝑆  =  ℂ  →  𝑆  ⊆  ℂ ) ) | 
						
							| 15 |  | elpri | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ ) ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝜑  →  ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ ) ) | 
						
							| 17 |  | pm3.44 | ⊢ ( ( ( 𝑆  =  ℝ  →  𝑆  ⊆  ℂ )  ∧  ( 𝑆  =  ℂ  →  𝑆  ⊆  ℂ ) )  →  ( ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ )  →  𝑆  ⊆  ℂ ) ) | 
						
							| 18 | 14 16 17 | mpsyl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 19 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  𝑆  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 ) ) | 
						
							| 20 | 9 18 19 | syl2anc | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 ) ) | 
						
							| 21 |  | toponss | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 )  ∧  𝐴  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) )  →  𝐴  ⊆  𝑆 ) | 
						
							| 22 | 20 2 21 | syl2anc | ⊢ ( 𝜑  →  𝐴  ⊆  𝑆 ) | 
						
							| 23 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  =  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) | 
						
							| 24 | 1 4 5 6 22 23 7 2 | dvmptres | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  0 ) ) |