| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 5 |
|
dvmptcmul.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 6 |
|
dvmptdivc.0 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 7 |
5 6
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
| 8 |
1 2 3 4 7
|
dvmptcmul |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐵 ) ) ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ≠ 0 ) |
| 11 |
2 9 10
|
divrec2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝐴 ) ) |
| 12 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) ) |
| 14 |
1 2 3 4
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 15 |
14 9 10
|
divrec2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝐵 ) ) |
| 16 |
15
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐵 ) ) ) |
| 17 |
8 13 16
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) |