| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptfprod.iph | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 2 |  | dvmptfprod.jph | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 3 |  | dvmptfprod.j | ⊢ 𝐽  =  ( 𝐾  ↾t  𝑆 ) | 
						
							| 4 |  | dvmptfprod.k | ⊢ 𝐾  =  ( TopOpen ‘ ℂfld ) | 
						
							| 5 |  | dvmptfprod.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 6 |  | dvmptfprod.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐽 ) | 
						
							| 7 |  | dvmptfprod.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 8 |  | dvmptfprod.a | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | dvmptfprod.b | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  ℂ ) | 
						
							| 10 |  | dvmptfprod.d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 11 |  | dvmptfprod.bc | ⊢ ( 𝑖  =  𝑗  →  𝐵  =  𝐶 ) | 
						
							| 12 |  | ssid | ⊢ 𝐼  ⊆  𝐼 | 
						
							| 13 | 12 | jctr | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐼  ⊆  𝐼 ) ) | 
						
							| 14 |  | sseq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑎  ⊆  𝐼  ↔  ∅  ⊆  𝐼 ) ) | 
						
							| 15 | 14 | anbi2d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  ↔  ( 𝜑  ∧  ∅  ⊆  𝐼 ) ) ) | 
						
							| 16 |  | prodeq1 | ⊢ ( 𝑎  =  ∅  →  ∏ 𝑖  ∈  𝑎 𝐴  =  ∏ 𝑖  ∈  ∅ 𝐴 ) | 
						
							| 17 | 16 | mpteq2dv | ⊢ ( 𝑎  =  ∅  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) ) ) | 
						
							| 19 |  | sumeq1 | ⊢ ( 𝑎  =  ∅  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 20 |  | difeq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑎  ∖  { 𝑗 } )  =  ( ∅  ∖  { 𝑗 } ) ) | 
						
							| 21 | 20 | prodeq1d | ⊢ ( 𝑎  =  ∅  →  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴  =  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 23 | 22 | sumeq2sdv | ⊢ ( 𝑎  =  ∅  →  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 24 | 19 23 | eqtrd | ⊢ ( 𝑎  =  ∅  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 25 | 24 | mpteq2dv | ⊢ ( 𝑎  =  ∅  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 26 | 18 25 | eqeq12d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  ↔  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) ) ) | 
						
							| 27 | 15 26 | imbi12d | ⊢ ( 𝑎  =  ∅  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) )  ↔  ( ( 𝜑  ∧  ∅  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) ) ) ) | 
						
							| 28 |  | sseq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ⊆  𝐼  ↔  𝑏  ⊆  𝐼 ) ) | 
						
							| 29 | 28 | anbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  ↔  ( 𝜑  ∧  𝑏  ⊆  𝐼 ) ) ) | 
						
							| 30 |  | prodeq1 | ⊢ ( 𝑎  =  𝑏  →  ∏ 𝑖  ∈  𝑎 𝐴  =  ∏ 𝑖  ∈  𝑏 𝐴 ) | 
						
							| 31 | 30 | mpteq2dv | ⊢ ( 𝑎  =  𝑏  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) ) ) | 
						
							| 33 |  | sumeq1 | ⊢ ( 𝑎  =  𝑏  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 34 |  | difeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ∖  { 𝑗 } )  =  ( 𝑏  ∖  { 𝑗 } ) ) | 
						
							| 35 | 34 | prodeq1d | ⊢ ( 𝑎  =  𝑏  →  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴  =  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 37 | 36 | sumeq2sdv | ⊢ ( 𝑎  =  𝑏  →  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 38 | 33 37 | eqtrd | ⊢ ( 𝑎  =  𝑏  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 39 | 38 | mpteq2dv | ⊢ ( 𝑎  =  𝑏  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 40 | 32 39 | eqeq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  ↔  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) ) | 
						
							| 41 | 29 40 | imbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) )  ↔  ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) ) ) | 
						
							| 42 |  | sseq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑎  ⊆  𝐼  ↔  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) ) | 
						
							| 43 | 42 | anbi2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  ↔  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) ) ) | 
						
							| 44 |  | prodeq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ∏ 𝑖  ∈  𝑎 𝐴  =  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) | 
						
							| 45 | 44 | mpteq2dv | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) ) ) | 
						
							| 47 |  | sumeq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 48 |  | difeq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑎  ∖  { 𝑗 } )  =  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) ) | 
						
							| 49 | 48 | prodeq1d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴  =  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 51 | 50 | sumeq2sdv | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 52 | 47 51 | eqtrd | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 53 | 52 | mpteq2dv | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 54 | 46 53 | eqeq12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  ↔  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) ) | 
						
							| 55 | 43 54 | imbi12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) )  ↔  ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) ) ) | 
						
							| 56 |  | sseq1 | ⊢ ( 𝑎  =  𝐼  →  ( 𝑎  ⊆  𝐼  ↔  𝐼  ⊆  𝐼 ) ) | 
						
							| 57 | 56 | anbi2d | ⊢ ( 𝑎  =  𝐼  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  ↔  ( 𝜑  ∧  𝐼  ⊆  𝐼 ) ) ) | 
						
							| 58 |  | prodeq1 | ⊢ ( 𝑎  =  𝐼  →  ∏ 𝑖  ∈  𝑎 𝐴  =  ∏ 𝑖  ∈  𝐼 𝐴 ) | 
						
							| 59 | 58 | mpteq2dv | ⊢ ( 𝑎  =  𝐼  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝐼 𝐴 ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝑎  =  𝐼  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝐼 𝐴 ) ) ) | 
						
							| 61 |  | sumeq1 | ⊢ ( 𝑎  =  𝐼  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 62 |  | difeq1 | ⊢ ( 𝑎  =  𝐼  →  ( 𝑎  ∖  { 𝑗 } )  =  ( 𝐼  ∖  { 𝑗 } ) ) | 
						
							| 63 | 62 | prodeq1d | ⊢ ( 𝑎  =  𝐼  →  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴  =  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( 𝑎  =  𝐼  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 65 | 64 | sumeq2sdv | ⊢ ( 𝑎  =  𝐼  →  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 66 | 61 65 | eqtrd | ⊢ ( 𝑎  =  𝐼  →  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 67 | 66 | mpteq2dv | ⊢ ( 𝑎  =  𝐼  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 68 | 60 67 | eqeq12d | ⊢ ( 𝑎  =  𝐼  →  ( ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) )  ↔  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝐼 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) ) ) | 
						
							| 69 | 57 68 | imbi12d | ⊢ ( 𝑎  =  𝐼  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑎 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑎 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑎  ∖  { 𝑗 } ) 𝐴 ) ) )  ↔  ( ( 𝜑  ∧  𝐼  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝐼 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) ) ) ) | 
						
							| 70 |  | prod0 | ⊢ ∏ 𝑖  ∈  ∅ 𝐴  =  1 | 
						
							| 71 | 70 | mpteq2i | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  1 ) | 
						
							| 72 | 71 | oveq2i | ⊢ ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  1 ) ) | 
						
							| 73 | 72 | a1i | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  1 ) ) ) | 
						
							| 74 | 4 | oveq1i | ⊢ ( 𝐾  ↾t  𝑆 )  =  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) | 
						
							| 75 | 3 74 | eqtri | ⊢ 𝐽  =  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) | 
						
							| 76 | 6 75 | eleqtrdi | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 77 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 78 | 5 76 77 | dvmptconst | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 79 |  | sum0 | ⊢ Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 )  =  0 | 
						
							| 80 | 79 | eqcomi | ⊢ 0  =  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 81 | 80 | mpteq2i | ⊢ ( 𝑥  ∈  𝑋  ↦  0 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 82 | 81 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  0 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 83 | 73 78 82 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  ∅  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ∅ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ∅ ( 𝐶  ·  ∏ 𝑖  ∈  ( ∅  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 85 |  | simp3 | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) )  →  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) ) | 
						
							| 86 |  | simp1r | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) )  →  ¬  𝑐  ∈  𝑏 ) | 
						
							| 87 |  | ssun1 | ⊢ 𝑏  ⊆  ( 𝑏  ∪  { 𝑐 } ) | 
						
							| 88 |  | sstr2 | ⊢ ( 𝑏  ⊆  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼  →  𝑏  ⊆  𝐼 ) ) | 
						
							| 89 | 87 88 | ax-mp | ⊢ ( ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼  →  𝑏  ⊆  𝐼 ) | 
						
							| 90 | 89 | anim2i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  →  ( 𝜑  ∧  𝑏  ⊆  𝐼 ) ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) )  →  ( 𝜑  ∧  𝑏  ⊆  𝐼 ) ) | 
						
							| 92 |  | simpl | ⊢ ( ( ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) )  →  ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) ) | 
						
							| 93 | 91 92 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 94 | 93 | 3adant1 | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 95 |  | nfv | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 ) | 
						
							| 96 |  | nfcv | ⊢ Ⅎ 𝑥 𝑆 | 
						
							| 97 |  | nfcv | ⊢ Ⅎ 𝑥  D | 
						
							| 98 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) | 
						
							| 99 | 96 97 98 | nfov | ⊢ Ⅎ 𝑥 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) ) | 
						
							| 100 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 101 | 99 100 | nfeq | ⊢ Ⅎ 𝑥 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 102 | 95 101 | nfan | ⊢ Ⅎ 𝑥 ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 103 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 | 
						
							| 104 | 1 103 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) | 
						
							| 105 |  | nfv | ⊢ Ⅎ 𝑖 ¬  𝑐  ∈  𝑏 | 
						
							| 106 | 104 105 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 ) | 
						
							| 107 |  | nfcv | ⊢ Ⅎ 𝑖 𝑆 | 
						
							| 108 |  | nfcv | ⊢ Ⅎ 𝑖  D | 
						
							| 109 |  | nfcv | ⊢ Ⅎ 𝑖 𝑋 | 
						
							| 110 |  | nfcv | ⊢ Ⅎ 𝑖 𝑏 | 
						
							| 111 | 110 | nfcprod1 | ⊢ Ⅎ 𝑖 ∏ 𝑖  ∈  𝑏 𝐴 | 
						
							| 112 | 109 111 | nfmpt | ⊢ Ⅎ 𝑖 ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) | 
						
							| 113 | 107 108 112 | nfov | ⊢ Ⅎ 𝑖 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) ) | 
						
							| 114 |  | nfcv | ⊢ Ⅎ 𝑖 𝐶 | 
						
							| 115 |  | nfcv | ⊢ Ⅎ 𝑖  · | 
						
							| 116 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝑏  ∖  { 𝑗 } ) | 
						
							| 117 | 116 | nfcprod1 | ⊢ Ⅎ 𝑖 ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 | 
						
							| 118 | 114 115 117 | nfov | ⊢ Ⅎ 𝑖 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 119 | 110 118 | nfsum | ⊢ Ⅎ 𝑖 Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 120 | 109 119 | nfmpt | ⊢ Ⅎ 𝑖 ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 121 | 113 120 | nfeq | ⊢ Ⅎ 𝑖 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 122 | 106 121 | nfan | ⊢ Ⅎ 𝑖 ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 123 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 | 
						
							| 124 | 2 123 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) | 
						
							| 125 |  | nfv | ⊢ Ⅎ 𝑗 ¬  𝑐  ∈  𝑏 | 
						
							| 126 | 124 125 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 ) | 
						
							| 127 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) ) | 
						
							| 128 |  | nfcv | ⊢ Ⅎ 𝑗 𝑋 | 
						
							| 129 |  | nfcv | ⊢ Ⅎ 𝑗 𝑏 | 
						
							| 130 | 129 | nfsum1 | ⊢ Ⅎ 𝑗 Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) | 
						
							| 131 | 128 130 | nfmpt | ⊢ Ⅎ 𝑗 ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 132 | 127 131 | nfeq | ⊢ Ⅎ 𝑗 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 133 | 126 132 | nfan | ⊢ Ⅎ 𝑗 ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 134 |  | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑐  /  𝑖 ⦌ 𝐴 | 
						
							| 135 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑐  /  𝑗 ⦌ 𝐶 | 
						
							| 136 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  →  𝜑 ) | 
						
							| 137 | 136 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  𝜑 ) | 
						
							| 138 | 137 8 | syl3an1 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 139 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  𝐼  ∈  Fin ) | 
						
							| 140 | 89 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  →  𝑏  ⊆  𝐼 ) | 
						
							| 141 | 140 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  𝑏  ⊆  𝐼 ) | 
						
							| 142 | 139 141 | ssfid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  𝑏  ∈  Fin ) | 
						
							| 143 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 144 | 143 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  𝑐  ∈  V ) | 
						
							| 145 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  ¬  𝑐  ∈  𝑏 ) | 
						
							| 146 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) | 
						
							| 147 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 148 | 137 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝑏 )  →  𝜑 ) | 
						
							| 149 | 141 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝑏 )  →  𝑏  ⊆  𝐼 ) | 
						
							| 150 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝑏 )  →  𝑗  ∈  𝑏 ) | 
						
							| 151 | 149 150 | sseldd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝑏 )  →  𝑗  ∈  𝐼 ) | 
						
							| 152 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝑏 )  →  𝑥  ∈  𝑋 ) | 
						
							| 153 |  | nfv | ⊢ Ⅎ 𝑖 𝑗  ∈  𝐼 | 
						
							| 154 |  | nfv | ⊢ Ⅎ 𝑖 𝑥  ∈  𝑋 | 
						
							| 155 | 1 153 154 | nf3an | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑗  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) | 
						
							| 156 |  | nfv | ⊢ Ⅎ 𝑖 𝐶  ∈  ℂ | 
						
							| 157 | 155 156 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑗  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ ) | 
						
							| 158 |  | eleq1w | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  𝐼  ↔  𝑗  ∈  𝐼 ) ) | 
						
							| 159 | 158 | 3anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) ) ) | 
						
							| 160 | 11 | eleq1d | ⊢ ( 𝑖  =  𝑗  →  ( 𝐵  ∈  ℂ  ↔  𝐶  ∈  ℂ ) ) | 
						
							| 161 | 159 160 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ ) ) ) | 
						
							| 162 | 157 161 9 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ ) | 
						
							| 163 | 148 151 152 162 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝑏 )  →  𝐶  ∈  ℂ ) | 
						
							| 164 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 165 | 136 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  𝜑 ) | 
						
							| 166 |  | id | ⊢ ( ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼  →  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) | 
						
							| 167 |  | vsnid | ⊢ 𝑐  ∈  { 𝑐 } | 
						
							| 168 |  | elun2 | ⊢ ( 𝑐  ∈  { 𝑐 }  →  𝑐  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 169 | 167 168 | mp1i | ⊢ ( ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼  →  𝑐  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 170 | 166 169 | sseldd | ⊢ ( ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼  →  𝑐  ∈  𝐼 ) | 
						
							| 171 | 170 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  𝑐  ∈  𝐼 ) | 
						
							| 172 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 173 |  | nfv | ⊢ Ⅎ 𝑗 𝑐  ∈  𝐼 | 
						
							| 174 |  | nfv | ⊢ Ⅎ 𝑗 𝑥  ∈  𝑋 | 
						
							| 175 | 2 173 174 | nf3an | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑐  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) | 
						
							| 176 | 135 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑐  /  𝑗 ⦌ 𝐶  ∈  ℂ | 
						
							| 177 | 175 176 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑐  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  ⦋ 𝑐  /  𝑗 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 178 |  | eleq1w | ⊢ ( 𝑗  =  𝑐  →  ( 𝑗  ∈  𝐼  ↔  𝑐  ∈  𝐼 ) ) | 
						
							| 179 | 178 | 3anbi2d | ⊢ ( 𝑗  =  𝑐  →  ( ( 𝜑  ∧  𝑗  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝑐  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) ) ) | 
						
							| 180 |  | csbeq1a | ⊢ ( 𝑗  =  𝑐  →  𝐶  =  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) | 
						
							| 181 | 180 | eleq1d | ⊢ ( 𝑗  =  𝑐  →  ( 𝐶  ∈  ℂ  ↔  ⦋ 𝑐  /  𝑗 ⦌ 𝐶  ∈  ℂ ) ) | 
						
							| 182 | 179 181 | imbi12d | ⊢ ( 𝑗  =  𝑐  →  ( ( ( 𝜑  ∧  𝑗  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑐  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  ⦋ 𝑐  /  𝑗 ⦌ 𝐶  ∈  ℂ ) ) ) | 
						
							| 183 | 177 182 162 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  ⦋ 𝑐  /  𝑗 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 184 | 165 171 172 183 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  ⦋ 𝑐  /  𝑗 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 185 | 184 | ad4ant14 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ⦋ 𝑐  /  𝑗 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 186 | 2 173 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑐  ∈  𝐼 ) | 
						
							| 187 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) ) | 
						
							| 188 | 128 135 | nfmpt | ⊢ Ⅎ 𝑗 ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) | 
						
							| 189 | 187 188 | nfeq | ⊢ Ⅎ 𝑗 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) | 
						
							| 190 | 186 189 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑐  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) ) | 
						
							| 191 | 178 | anbi2d | ⊢ ( 𝑗  =  𝑐  →  ( ( 𝜑  ∧  𝑗  ∈  𝐼 )  ↔  ( 𝜑  ∧  𝑐  ∈  𝐼 ) ) ) | 
						
							| 192 |  | csbeq1 | ⊢ ( 𝑗  =  𝑐  →  ⦋ 𝑗  /  𝑖 ⦌ 𝐴  =  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) | 
						
							| 193 | 192 | mpteq2dv | ⊢ ( 𝑗  =  𝑐  →  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) ) | 
						
							| 194 | 193 | oveq2d | ⊢ ( 𝑗  =  𝑐  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) ) ) | 
						
							| 195 | 180 | mpteq2dv | ⊢ ( 𝑗  =  𝑐  →  ( 𝑥  ∈  𝑋  ↦  𝐶 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) ) | 
						
							| 196 | 194 195 | eqeq12d | ⊢ ( 𝑗  =  𝑐  →  ( ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 )  ↔  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) ) ) | 
						
							| 197 | 191 196 | imbi12d | ⊢ ( 𝑗  =  𝑐  →  ( ( ( 𝜑  ∧  𝑗  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) )  ↔  ( ( 𝜑  ∧  𝑐  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) ) ) ) | 
						
							| 198 | 1 153 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑗  ∈  𝐼 ) | 
						
							| 199 |  | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑗  /  𝑖 ⦌ 𝐴 | 
						
							| 200 | 109 199 | nfmpt | ⊢ Ⅎ 𝑖 ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) | 
						
							| 201 | 107 108 200 | nfov | ⊢ Ⅎ 𝑖 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) ) | 
						
							| 202 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝑥  ∈  𝑋  ↦  𝐶 ) | 
						
							| 203 | 201 202 | nfeq | ⊢ Ⅎ 𝑖 ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) | 
						
							| 204 | 198 203 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑗  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) | 
						
							| 205 | 158 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝐼 ) ) ) | 
						
							| 206 |  | csbeq1a | ⊢ ( 𝑖  =  𝑗  →  𝐴  =  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) | 
						
							| 207 | 206 | mpteq2dv | ⊢ ( 𝑖  =  𝑗  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) ) | 
						
							| 208 | 207 | oveq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) ) ) | 
						
							| 209 | 11 | mpteq2dv | ⊢ ( 𝑖  =  𝑗  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) | 
						
							| 210 | 208 209 | eqeq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ↔  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) ) | 
						
							| 211 | 205 210 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) ) ) | 
						
							| 212 | 204 211 10 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) | 
						
							| 213 | 190 197 212 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) ) | 
						
							| 214 | 170 213 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) ) | 
						
							| 215 | 214 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑐  /  𝑗 ⦌ 𝐶 ) ) | 
						
							| 216 |  | csbeq1a | ⊢ ( 𝑖  =  𝑐  →  𝐴  =  ⦋ 𝑐  /  𝑖 ⦌ 𝐴 ) | 
						
							| 217 | 102 122 133 134 135 138 142 144 145 146 147 163 164 185 215 216 180 | dvmptfprodlem | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 218 | 85 86 94 217 | syl21anc | ⊢ ( ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  ∧  ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  ∧  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 219 | 218 | 3exp | ⊢ ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  →  ( ( ( 𝜑  ∧  𝑏  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝑏 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝑏 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝑏  ∖  { 𝑗 } ) 𝐴 ) ) )  →  ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝑏  ∪  { 𝑐 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝑏  ∪  { 𝑐 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) ) ) | 
						
							| 220 | 27 41 55 69 84 219 | findcard2s | ⊢ ( 𝐼  ∈  Fin  →  ( ( 𝜑  ∧  𝐼  ⊆  𝐼 )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝐼 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) ) ) | 
						
							| 221 | 7 13 220 | sylc | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝐼 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝐼 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐼  ∖  { 𝑗 } ) 𝐴 ) ) ) |