Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptfprodlem.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
dvmptfprodlem.iph |
⊢ Ⅎ 𝑖 𝜑 |
3 |
|
dvmptfprodlem.jph |
⊢ Ⅎ 𝑗 𝜑 |
4 |
|
dvmptfprodlem.if |
⊢ Ⅎ 𝑖 𝐹 |
5 |
|
dvmptfprodlem.jg |
⊢ Ⅎ 𝑗 𝐺 |
6 |
|
dvmptfprodlem.a |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
7 |
|
dvmptfprodlem.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
8 |
|
dvmptfprodlem.e |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
9 |
|
dvmptfprodlem.db |
⊢ ( 𝜑 → ¬ 𝐸 ∈ 𝐷 ) |
10 |
|
dvmptfprodlem.ss |
⊢ ( 𝜑 → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 ) |
11 |
|
dvmptfprodlem.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
12 |
|
dvmptfprodlem.c |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
13 |
|
dvmptfprodlem.dvp |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐷 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ) ) |
14 |
|
dvmptfprodlem.14 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ ℂ ) |
15 |
|
dvmptfprodlem.dvf |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐺 ) ) |
16 |
|
dvmptfprodlem.f |
⊢ ( 𝑖 = 𝐸 → 𝐴 = 𝐹 ) |
17 |
|
dvmptfprodlem.cg |
⊢ ( 𝑗 = 𝐸 → 𝐶 = 𝐺 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑥 |
19 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑋 |
20 |
18 19
|
nfel |
⊢ Ⅎ 𝑖 𝑥 ∈ 𝑋 |
21 |
2 20
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
22 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Ⅎ 𝑖 𝐹 ) |
23 |
|
snfi |
⊢ { 𝐸 } ∈ Fin |
24 |
23
|
a1i |
⊢ ( 𝜑 → { 𝐸 } ∈ Fin ) |
25 |
|
unfi |
⊢ ( ( 𝐷 ∈ Fin ∧ { 𝐸 } ∈ Fin ) → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin ) |
26 |
7 24 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin ) |
28 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝜑 ) |
29 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑥 ∈ 𝑋 ) |
32 |
28 30 31 6
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝐴 ∈ ℂ ) |
33 |
|
snidg |
⊢ ( 𝐸 ∈ V → 𝐸 ∈ { 𝐸 } ) |
34 |
8 33
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ { 𝐸 } ) |
35 |
|
elun2 |
⊢ ( 𝐸 ∈ { 𝐸 } → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
38 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) |
39 |
21 22 27 32 37 38
|
fprodsplit1f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 = ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) |
40 |
|
difundir |
⊢ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) |
41 |
40
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) ) |
42 |
|
difsn |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ( 𝐷 ∖ { 𝐸 } ) = 𝐷 ) |
43 |
9 42
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∖ { 𝐸 } ) = 𝐷 ) |
44 |
|
difid |
⊢ ( { 𝐸 } ∖ { 𝐸 } ) = ∅ |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( { 𝐸 } ∖ { 𝐸 } ) = ∅ ) |
46 |
43 45
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) = ( 𝐷 ∪ ∅ ) ) |
47 |
|
un0 |
⊢ ( 𝐷 ∪ ∅ ) = 𝐷 |
48 |
47
|
a1i |
⊢ ( 𝜑 → ( 𝐷 ∪ ∅ ) = 𝐷 ) |
49 |
41 46 48
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = 𝐷 ) |
50 |
49
|
prodeq1d |
⊢ ( 𝜑 → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 = ∏ 𝑖 ∈ 𝐷 𝐴 ) |
51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
53 |
39 52
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 = ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
54 |
1 53
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) ) ) |
56 |
10 36
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐼 ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ 𝐼 ) |
58 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
60 |
58 57 59
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) |
61 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐸 |
62 |
|
nfv |
⊢ Ⅎ 𝑖 𝐸 ∈ 𝐼 |
63 |
2 62 20
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) |
64 |
|
nfcv |
⊢ Ⅎ 𝑖 ℂ |
65 |
4 64
|
nfel |
⊢ Ⅎ 𝑖 𝐹 ∈ ℂ |
66 |
63 65
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) |
67 |
|
ancom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) ↔ ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) ) |
68 |
67
|
imbi1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 = 𝐹 ) ) |
69 |
|
eqcom |
⊢ ( 𝐴 = 𝐹 ↔ 𝐹 = 𝐴 ) |
70 |
69
|
imbi2i |
⊢ ( ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) ) |
71 |
68 70
|
bitri |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) ) |
72 |
38 71
|
mpbi |
⊢ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) |
73 |
72
|
3adantr2 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) |
74 |
73
|
3adant2 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) |
75 |
|
simp3 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) |
76 |
|
eleq1 |
⊢ ( 𝑖 = 𝐸 → ( 𝑖 ∈ 𝐼 ↔ 𝐸 ∈ 𝐼 ) ) |
77 |
76
|
3anbi2d |
⊢ ( 𝑖 = 𝐸 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) ) |
78 |
77
|
imbi1d |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) ) |
79 |
78
|
biimpa |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) |
80 |
79
|
3adant3 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) |
81 |
75 80
|
mpd |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 ∈ ℂ ) |
82 |
74 81
|
eqeltrd |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 ∈ ℂ ) |
83 |
82
|
3exp |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) ) ) |
84 |
6
|
2a1i |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) ) |
85 |
83 84
|
impbid |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) ) ) |
86 |
61 66 85 6
|
vtoclgf |
⊢ ( 𝐸 ∈ 𝐼 → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) ) |
87 |
57 60 86
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) |
88 |
58 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ Fin ) |
89 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝜑 ) |
90 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 ) |
91 |
|
elun1 |
⊢ ( 𝑖 ∈ 𝐷 → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
93 |
90 92
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝐼 ) |
94 |
93
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝐼 ) |
95 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝑥 ∈ 𝑋 ) |
96 |
89 94 95 6
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝐴 ∈ ℂ ) |
97 |
21 88 96
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ 𝐷 𝐴 ∈ ℂ ) |
98 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ∈ 𝑋 |
99 |
3 98
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
100 |
|
diffi |
⊢ ( 𝐷 ∈ Fin → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
101 |
7 100
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
103 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) → 𝑖 ∈ 𝐷 ) |
104 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝑖 ∈ 𝐷 ) |
105 |
104 96
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
106 |
21 102 105
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
108 |
12 107
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
109 |
99 88 108
|
fsumclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
110 |
1 11 87 14 15 97 109 13
|
dvmptmulf |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) ) |
111 |
|
nfcv |
⊢ Ⅎ 𝑗 · |
112 |
|
nfcv |
⊢ Ⅎ 𝑗 ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 |
113 |
5 111 112
|
nfov |
⊢ Ⅎ 𝑗 ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) |
114 |
58 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ V ) |
115 |
58 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝐸 ∈ 𝐷 ) |
116 |
|
diffi |
⊢ ( ( 𝐷 ∪ { 𝐸 } ) ∈ Fin → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin ) |
117 |
26 116
|
syl |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin ) |
118 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin ) |
119 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
120 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
121 |
120 32
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
122 |
21 118 121
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
124 |
12 123
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
125 |
|
sneq |
⊢ ( 𝑗 = 𝐸 → { 𝑗 } = { 𝐸 } ) |
126 |
125
|
difeq2d |
⊢ ( 𝑗 = 𝐸 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) |
127 |
126
|
prodeq1d |
⊢ ( 𝑗 = 𝐸 → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) |
128 |
17 127
|
oveq12d |
⊢ ( 𝑗 = 𝐸 → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) |
129 |
49 7
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ∈ Fin ) |
130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ∈ Fin ) |
131 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝜑 ) |
132 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 ) |
133 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
134 |
133
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
135 |
132 134
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
136 |
135
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
137 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑥 ∈ 𝑋 ) |
138 |
131 136 137 6
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝐴 ∈ ℂ ) |
139 |
21 130 138
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ∈ ℂ ) |
140 |
14 139
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ∈ ℂ ) |
141 |
99 113 88 114 115 124 128 140
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) + ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) ) |
142 |
|
difundir |
⊢ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) |
143 |
142
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) ) |
144 |
|
nfv |
⊢ Ⅎ 𝑥 𝑗 ∈ 𝐷 |
145 |
1 144
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) |
146 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐸 } → 𝑥 = 𝐸 ) |
147 |
146
|
eqcomd |
⊢ ( 𝑥 ∈ { 𝐸 } → 𝐸 = 𝑥 ) |
148 |
147
|
adantr |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑥 ) |
149 |
|
simpr |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝑥 = 𝑗 ) |
150 |
|
eqidd |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝑗 = 𝑗 ) |
151 |
148 149 150
|
3eqtrd |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑗 ) |
152 |
151
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑗 ) |
153 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝑗 ∈ 𝐷 ) |
154 |
152 153
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝐸 ∈ 𝐷 ) |
155 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → ¬ 𝐸 ∈ 𝐷 ) |
156 |
154 155
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) → ¬ 𝑥 = 𝑗 ) |
157 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑗 } ↔ 𝑥 = 𝑗 ) |
158 |
156 157
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) → ¬ 𝑥 ∈ { 𝑗 } ) |
159 |
158
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝐸 } → ¬ 𝑥 ∈ { 𝑗 } ) ) |
160 |
145 159
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ∀ 𝑥 ∈ { 𝐸 } ¬ 𝑥 ∈ { 𝑗 } ) |
161 |
|
disj |
⊢ ( ( { 𝐸 } ∩ { 𝑗 } ) = ∅ ↔ ∀ 𝑥 ∈ { 𝐸 } ¬ 𝑥 ∈ { 𝑗 } ) |
162 |
160 161
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( { 𝐸 } ∩ { 𝑗 } ) = ∅ ) |
163 |
|
disjdif2 |
⊢ ( ( { 𝐸 } ∩ { 𝑗 } ) = ∅ → ( { 𝐸 } ∖ { 𝑗 } ) = { 𝐸 } ) |
164 |
162 163
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( { 𝐸 } ∖ { 𝑗 } ) = { 𝐸 } ) |
165 |
164
|
uneq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) ) |
166 |
143 165
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) ) |
167 |
166
|
prodeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 ) |
168 |
167
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 ) |
169 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ 𝐷 |
170 |
21 169
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) |
171 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
172 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝜑 ) |
173 |
172 8
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝐸 ∈ V ) |
174 |
|
id |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ 𝐸 ∈ 𝐷 ) |
175 |
174
|
intnanrd |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ ( 𝐸 ∈ 𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) ) |
176 |
174 175
|
syl |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ ( 𝐸 ∈ 𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) ) |
177 |
|
eldif |
⊢ ( 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ↔ ( 𝐸 ∈ 𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) ) |
178 |
176 177
|
sylnibr |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ) |
179 |
9 178
|
syl |
⊢ ( 𝜑 → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ) |
180 |
172 179
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ) |
181 |
105
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
182 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝐹 ∈ ℂ ) |
183 |
170 4 171 173 180 181 16 182
|
fprodsplitsn |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) |
184 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) |
185 |
168 183 184
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) |
186 |
185
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) ) |
187 |
12 107 182
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) ) |
188 |
187
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
189 |
186 188
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
190 |
189
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑗 ∈ 𝐷 → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) |
191 |
99 190
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
192 |
191
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
193 |
99 88 87 108
|
fsummulc1f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = Σ 𝑗 ∈ 𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
194 |
193
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
195 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
196 |
192 194 195
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
197 |
109 87
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ∈ ℂ ) |
198 |
196 197
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
199 |
198 140
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) + ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) = ( ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) + Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |
200 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
202 |
201 196
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) + Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) = ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) |
203 |
141 199 202
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) = Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) |
204 |
1 203
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |
205 |
55 110 204
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |