Metamath Proof Explorer


Theorem dvmptfprodlem

Description: Induction step for dvmptfprod . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvmptfprodlem.xph 𝑥 𝜑
dvmptfprodlem.iph 𝑖 𝜑
dvmptfprodlem.jph 𝑗 𝜑
dvmptfprodlem.if 𝑖 𝐹
dvmptfprodlem.jg 𝑗 𝐺
dvmptfprodlem.a ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptfprodlem.d ( 𝜑𝐷 ∈ Fin )
dvmptfprodlem.e ( 𝜑𝐸 ∈ V )
dvmptfprodlem.db ( 𝜑 → ¬ 𝐸𝐷 )
dvmptfprodlem.ss ( 𝜑 → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 )
dvmptfprodlem.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptfprodlem.c ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → 𝐶 ∈ ℂ )
dvmptfprodlem.dvp ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐷 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ) )
dvmptfprodlem.14 ( ( 𝜑𝑥𝑋 ) → 𝐺 ∈ ℂ )
dvmptfprodlem.dvf ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐹 ) ) = ( 𝑥𝑋𝐺 ) )
dvmptfprodlem.f ( 𝑖 = 𝐸𝐴 = 𝐹 )
dvmptfprodlem.cg ( 𝑗 = 𝐸𝐶 = 𝐺 )
Assertion dvmptfprodlem ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 dvmptfprodlem.xph 𝑥 𝜑
2 dvmptfprodlem.iph 𝑖 𝜑
3 dvmptfprodlem.jph 𝑗 𝜑
4 dvmptfprodlem.if 𝑖 𝐹
5 dvmptfprodlem.jg 𝑗 𝐺
6 dvmptfprodlem.a ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ )
7 dvmptfprodlem.d ( 𝜑𝐷 ∈ Fin )
8 dvmptfprodlem.e ( 𝜑𝐸 ∈ V )
9 dvmptfprodlem.db ( 𝜑 → ¬ 𝐸𝐷 )
10 dvmptfprodlem.ss ( 𝜑 → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 )
11 dvmptfprodlem.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
12 dvmptfprodlem.c ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → 𝐶 ∈ ℂ )
13 dvmptfprodlem.dvp ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐷 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ) )
14 dvmptfprodlem.14 ( ( 𝜑𝑥𝑋 ) → 𝐺 ∈ ℂ )
15 dvmptfprodlem.dvf ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐹 ) ) = ( 𝑥𝑋𝐺 ) )
16 dvmptfprodlem.f ( 𝑖 = 𝐸𝐴 = 𝐹 )
17 dvmptfprodlem.cg ( 𝑗 = 𝐸𝐶 = 𝐺 )
18 nfcv 𝑖 𝑥
19 nfcv 𝑖 𝑋
20 18 19 nfel 𝑖 𝑥𝑋
21 2 20 nfan 𝑖 ( 𝜑𝑥𝑋 )
22 4 a1i ( ( 𝜑𝑥𝑋 ) → 𝑖 𝐹 )
23 snfi { 𝐸 } ∈ Fin
24 23 a1i ( 𝜑 → { 𝐸 } ∈ Fin )
25 unfi ( ( 𝐷 ∈ Fin ∧ { 𝐸 } ∈ Fin ) → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin )
26 7 24 25 syl2anc ( 𝜑 → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin )
27 26 adantr ( ( 𝜑𝑥𝑋 ) → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin )
28 simpll ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝜑 )
29 10 sselda ( ( 𝜑𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑖𝐼 )
30 29 adantlr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑖𝐼 )
31 simplr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑥𝑋 )
32 28 30 31 6 syl3anc ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝐴 ∈ ℂ )
33 snidg ( 𝐸 ∈ V → 𝐸 ∈ { 𝐸 } )
34 8 33 syl ( 𝜑𝐸 ∈ { 𝐸 } )
35 elun2 ( 𝐸 ∈ { 𝐸 } → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) )
36 34 35 syl ( 𝜑𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) )
37 36 adantr ( ( 𝜑𝑥𝑋 ) → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) )
38 16 adantl ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 )
39 21 22 27 32 37 38 fprodsplit1f ( ( 𝜑𝑥𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 = ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) )
40 difundir ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) )
41 40 a1i ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) )
42 difsn ( ¬ 𝐸𝐷 → ( 𝐷 ∖ { 𝐸 } ) = 𝐷 )
43 9 42 syl ( 𝜑 → ( 𝐷 ∖ { 𝐸 } ) = 𝐷 )
44 difid ( { 𝐸 } ∖ { 𝐸 } ) = ∅
45 44 a1i ( 𝜑 → ( { 𝐸 } ∖ { 𝐸 } ) = ∅ )
46 43 45 uneq12d ( 𝜑 → ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) = ( 𝐷 ∪ ∅ ) )
47 un0 ( 𝐷 ∪ ∅ ) = 𝐷
48 47 a1i ( 𝜑 → ( 𝐷 ∪ ∅ ) = 𝐷 )
49 41 46 48 3eqtrd ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = 𝐷 )
50 49 prodeq1d ( 𝜑 → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 = ∏ 𝑖𝐷 𝐴 )
51 50 oveq2d ( 𝜑 → ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐹 · ∏ 𝑖𝐷 𝐴 ) )
52 51 adantr ( ( 𝜑𝑥𝑋 ) → ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐹 · ∏ 𝑖𝐷 𝐴 ) )
53 39 52 eqtrd ( ( 𝜑𝑥𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 = ( 𝐹 · ∏ 𝑖𝐷 𝐴 ) )
54 1 53 mpteq2da ( 𝜑 → ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) = ( 𝑥𝑋 ↦ ( 𝐹 · ∏ 𝑖𝐷 𝐴 ) ) )
55 54 oveq2d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐹 · ∏ 𝑖𝐷 𝐴 ) ) ) )
56 10 36 sseldd ( 𝜑𝐸𝐼 )
57 56 adantr ( ( 𝜑𝑥𝑋 ) → 𝐸𝐼 )
58 simpl ( ( 𝜑𝑥𝑋 ) → 𝜑 )
59 simpr ( ( 𝜑𝑥𝑋 ) → 𝑥𝑋 )
60 58 57 59 3jca ( ( 𝜑𝑥𝑋 ) → ( 𝜑𝐸𝐼𝑥𝑋 ) )
61 nfcv 𝑖 𝐸
62 nfv 𝑖 𝐸𝐼
63 2 62 20 nf3an 𝑖 ( 𝜑𝐸𝐼𝑥𝑋 )
64 nfcv 𝑖
65 4 64 nfel 𝑖 𝐹 ∈ ℂ
66 63 65 nfim 𝑖 ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐹 ∈ ℂ )
67 ancom ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 = 𝐸 ) ↔ ( 𝑖 = 𝐸 ∧ ( 𝜑𝑥𝑋 ) ) )
68 67 imbi1i ( ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑𝑥𝑋 ) ) → 𝐴 = 𝐹 ) )
69 eqcom ( 𝐴 = 𝐹𝐹 = 𝐴 )
70 69 imbi2i ( ( ( 𝑖 = 𝐸 ∧ ( 𝜑𝑥𝑋 ) ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑𝑥𝑋 ) ) → 𝐹 = 𝐴 ) )
71 68 70 bitri ( ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑𝑥𝑋 ) ) → 𝐹 = 𝐴 ) )
72 38 71 mpbi ( ( 𝑖 = 𝐸 ∧ ( 𝜑𝑥𝑋 ) ) → 𝐹 = 𝐴 )
73 72 3adantr2 ( ( 𝑖 = 𝐸 ∧ ( 𝜑𝐸𝐼𝑥𝑋 ) ) → 𝐹 = 𝐴 )
74 73 3adant2 ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑𝐸𝐼𝑥𝑋 ) ) → 𝐹 = 𝐴 )
75 simp3 ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑𝐸𝐼𝑥𝑋 ) ) → ( 𝜑𝐸𝐼𝑥𝑋 ) )
76 eleq1 ( 𝑖 = 𝐸 → ( 𝑖𝐼𝐸𝐼 ) )
77 76 3anbi2d ( 𝑖 = 𝐸 → ( ( 𝜑𝑖𝐼𝑥𝑋 ) ↔ ( 𝜑𝐸𝐼𝑥𝑋 ) ) )
78 77 imbi1d ( 𝑖 = 𝐸 → ( ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ) )
79 78 biimpa ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ) → ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) )
80 79 3adant3 ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑𝐸𝐼𝑥𝑋 ) ) → ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) )
81 75 80 mpd ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑𝐸𝐼𝑥𝑋 ) ) → 𝐴 ∈ ℂ )
82 74 81 eqeltrd ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑𝐸𝐼𝑥𝑋 ) ) → 𝐹 ∈ ℂ )
83 82 3exp ( 𝑖 = 𝐸 → ( ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) → ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐹 ∈ ℂ ) ) )
84 6 2a1i ( 𝑖 = 𝐸 → ( ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐹 ∈ ℂ ) → ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ) )
85 83 84 impbid ( 𝑖 = 𝐸 → ( ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐹 ∈ ℂ ) ) )
86 61 66 85 6 vtoclgf ( 𝐸𝐼 → ( ( 𝜑𝐸𝐼𝑥𝑋 ) → 𝐹 ∈ ℂ ) )
87 57 60 86 sylc ( ( 𝜑𝑥𝑋 ) → 𝐹 ∈ ℂ )
88 58 7 syl ( ( 𝜑𝑥𝑋 ) → 𝐷 ∈ Fin )
89 58 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖𝐷 ) → 𝜑 )
90 10 adantr ( ( 𝜑𝑖𝐷 ) → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 )
91 elun1 ( 𝑖𝐷𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) )
92 91 adantl ( ( 𝜑𝑖𝐷 ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) )
93 90 92 sseldd ( ( 𝜑𝑖𝐷 ) → 𝑖𝐼 )
94 93 adantlr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖𝐷 ) → 𝑖𝐼 )
95 59 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖𝐷 ) → 𝑥𝑋 )
96 89 94 95 6 syl3anc ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖𝐷 ) → 𝐴 ∈ ℂ )
97 21 88 96 fprodclf ( ( 𝜑𝑥𝑋 ) → ∏ 𝑖𝐷 𝐴 ∈ ℂ )
98 nfv 𝑗 𝑥𝑋
99 3 98 nfan 𝑗 ( 𝜑𝑥𝑋 )
100 diffi ( 𝐷 ∈ Fin → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin )
101 7 100 syl ( 𝜑 → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin )
102 101 adantr ( ( 𝜑𝑥𝑋 ) → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin )
103 eldifi ( 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) → 𝑖𝐷 )
104 103 adantl ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝑖𝐷 )
105 104 96 syldan ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ )
106 21 102 105 fprodclf ( ( 𝜑𝑥𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ∈ ℂ )
107 106 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ∈ ℂ )
108 12 107 mulcld ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ )
109 99 88 108 fsumclf ( ( 𝜑𝑥𝑋 ) → Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ )
110 1 11 87 14 15 97 109 13 dvmptmulf ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐹 · ∏ 𝑖𝐷 𝐴 ) ) ) = ( 𝑥𝑋 ↦ ( ( 𝐺 · ∏ 𝑖𝐷 𝐴 ) + ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) )
111 nfcv 𝑗 ·
112 nfcv 𝑗𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴
113 5 111 112 nfov 𝑗 ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 )
114 58 8 syl ( ( 𝜑𝑥𝑋 ) → 𝐸 ∈ V )
115 58 9 syl ( ( 𝜑𝑥𝑋 ) → ¬ 𝐸𝐷 )
116 diffi ( ( 𝐷 ∪ { 𝐸 } ) ∈ Fin → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin )
117 26 116 syl ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin )
118 117 adantr ( ( 𝜑𝑥𝑋 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin )
119 eldifi ( 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) )
120 119 adantl ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) )
121 120 32 syldan ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ )
122 21 118 121 fprodclf ( ( 𝜑𝑥𝑋 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ∈ ℂ )
123 122 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ∈ ℂ )
124 12 123 mulcld ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ )
125 sneq ( 𝑗 = 𝐸 → { 𝑗 } = { 𝐸 } )
126 125 difeq2d ( 𝑗 = 𝐸 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) )
127 126 prodeq1d ( 𝑗 = 𝐸 → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 )
128 17 127 oveq12d ( 𝑗 = 𝐸 → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) )
129 49 7 eqeltrd ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ∈ Fin )
130 129 adantr ( ( 𝜑𝑥𝑋 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ∈ Fin )
131 58 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝜑 )
132 10 adantr ( ( 𝜑𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 )
133 eldifi ( 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) )
134 133 adantl ( ( 𝜑𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) )
135 132 134 sseldd ( ( 𝜑𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖𝐼 )
136 135 adantlr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖𝐼 )
137 59 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑥𝑋 )
138 131 136 137 6 syl3anc ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝐴 ∈ ℂ )
139 21 130 138 fprodclf ( ( 𝜑𝑥𝑋 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ∈ ℂ )
140 14 139 mulcld ( ( 𝜑𝑥𝑋 ) → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ∈ ℂ )
141 99 113 88 114 115 124 128 140 fsumsplitsn ( ( 𝜑𝑥𝑋 ) → Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) + ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) )
142 difundir ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) )
143 142 a1i ( ( 𝜑𝑗𝐷 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) )
144 nfv 𝑥 𝑗𝐷
145 1 144 nfan 𝑥 ( 𝜑𝑗𝐷 )
146 elsni ( 𝑥 ∈ { 𝐸 } → 𝑥 = 𝐸 )
147 146 eqcomd ( 𝑥 ∈ { 𝐸 } → 𝐸 = 𝑥 )
148 147 adantr ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑥 )
149 simpr ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝑥 = 𝑗 )
150 eqidd ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝑗 = 𝑗 )
151 148 149 150 3eqtrd ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑗 )
152 151 adantll ( ( ( ( 𝜑𝑗𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑗 )
153 simpllr ( ( ( ( 𝜑𝑗𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝑗𝐷 )
154 152 153 eqeltrd ( ( ( ( 𝜑𝑗𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝐸𝐷 )
155 9 ad3antrrr ( ( ( ( 𝜑𝑗𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → ¬ 𝐸𝐷 )
156 154 155 pm2.65da ( ( ( 𝜑𝑗𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) → ¬ 𝑥 = 𝑗 )
157 velsn ( 𝑥 ∈ { 𝑗 } ↔ 𝑥 = 𝑗 )
158 156 157 sylnibr ( ( ( 𝜑𝑗𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) → ¬ 𝑥 ∈ { 𝑗 } )
159 158 ex ( ( 𝜑𝑗𝐷 ) → ( 𝑥 ∈ { 𝐸 } → ¬ 𝑥 ∈ { 𝑗 } ) )
160 145 159 ralrimi ( ( 𝜑𝑗𝐷 ) → ∀ 𝑥 ∈ { 𝐸 } ¬ 𝑥 ∈ { 𝑗 } )
161 disj ( ( { 𝐸 } ∩ { 𝑗 } ) = ∅ ↔ ∀ 𝑥 ∈ { 𝐸 } ¬ 𝑥 ∈ { 𝑗 } )
162 160 161 sylibr ( ( 𝜑𝑗𝐷 ) → ( { 𝐸 } ∩ { 𝑗 } ) = ∅ )
163 disjdif2 ( ( { 𝐸 } ∩ { 𝑗 } ) = ∅ → ( { 𝐸 } ∖ { 𝑗 } ) = { 𝐸 } )
164 162 163 syl ( ( 𝜑𝑗𝐷 ) → ( { 𝐸 } ∖ { 𝑗 } ) = { 𝐸 } )
165 164 uneq2d ( ( 𝜑𝑗𝐷 ) → ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) )
166 143 165 eqtrd ( ( 𝜑𝑗𝐷 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) )
167 166 prodeq1d ( ( 𝜑𝑗𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 )
168 167 adantlr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 )
169 nfv 𝑖 𝑗𝐷
170 21 169 nfan 𝑖 ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 )
171 102 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin )
172 58 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → 𝜑 )
173 172 8 syl ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → 𝐸 ∈ V )
174 id ( ¬ 𝐸𝐷 → ¬ 𝐸𝐷 )
175 174 intnanrd ( ¬ 𝐸𝐷 → ¬ ( 𝐸𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) )
176 174 175 syl ( ¬ 𝐸𝐷 → ¬ ( 𝐸𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) )
177 eldif ( 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ↔ ( 𝐸𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) )
178 176 177 sylnibr ( ¬ 𝐸𝐷 → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) )
179 9 178 syl ( 𝜑 → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) )
180 172 179 syl ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) )
181 105 adantlr ( ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ )
182 87 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → 𝐹 ∈ ℂ )
183 170 4 171 173 180 181 16 182 fprodsplitsn ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) )
184 eqidd ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) )
185 168 183 184 3eqtrd ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) )
186 185 oveq2d ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) )
187 12 107 182 mulassd ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) )
188 187 eqcomd ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
189 186 188 eqtrd ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑗𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
190 189 ex ( ( 𝜑𝑥𝑋 ) → ( 𝑗𝐷 → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) )
191 99 190 ralrimi ( ( 𝜑𝑥𝑋 ) → ∀ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
192 191 sumeq2d ( ( 𝜑𝑥𝑋 ) → Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
193 99 88 87 108 fsummulc1f ( ( 𝜑𝑥𝑋 ) → ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = Σ 𝑗𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
194 193 eqcomd ( ( 𝜑𝑥𝑋 ) → Σ 𝑗𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
195 eqidd ( ( 𝜑𝑥𝑋 ) → ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
196 192 194 195 3eqtrd ( ( 𝜑𝑥𝑋 ) → Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) )
197 109 87 mulcld ( ( 𝜑𝑥𝑋 ) → ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ∈ ℂ )
198 196 197 eqeltrd ( ( 𝜑𝑥𝑋 ) → Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ )
199 198 140 addcomd ( ( 𝜑𝑥𝑋 ) → ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) + ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) = ( ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) + Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) )
200 50 oveq2d ( 𝜑 → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖𝐷 𝐴 ) )
201 200 adantr ( ( 𝜑𝑥𝑋 ) → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖𝐷 𝐴 ) )
202 201 196 oveq12d ( ( 𝜑𝑥𝑋 ) → ( ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) + Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) = ( ( 𝐺 · ∏ 𝑖𝐷 𝐴 ) + ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) )
203 141 199 202 3eqtrrd ( ( 𝜑𝑥𝑋 ) → ( ( 𝐺 · ∏ 𝑖𝐷 𝐴 ) + ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) = Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) )
204 1 203 mpteq2da ( 𝜑 → ( 𝑥𝑋 ↦ ( ( 𝐺 · ∏ 𝑖𝐷 𝐴 ) + ( Σ 𝑗𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) )
205 55 110 204 3eqtrd ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) )