| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptfprodlem.xph | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | dvmptfprodlem.iph | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 3 |  | dvmptfprodlem.jph | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 4 |  | dvmptfprodlem.if | ⊢ Ⅎ 𝑖 𝐹 | 
						
							| 5 |  | dvmptfprodlem.jg | ⊢ Ⅎ 𝑗 𝐺 | 
						
							| 6 |  | dvmptfprodlem.a | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | dvmptfprodlem.d | ⊢ ( 𝜑  →  𝐷  ∈  Fin ) | 
						
							| 8 |  | dvmptfprodlem.e | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 9 |  | dvmptfprodlem.db | ⊢ ( 𝜑  →  ¬  𝐸  ∈  𝐷 ) | 
						
							| 10 |  | dvmptfprodlem.ss | ⊢ ( 𝜑  →  ( 𝐷  ∪  { 𝐸 } )  ⊆  𝐼 ) | 
						
							| 11 |  | dvmptfprodlem.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 12 |  | dvmptfprodlem.c | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  𝐶  ∈  ℂ ) | 
						
							| 13 |  | dvmptfprodlem.dvp | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  𝐷 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 14 |  | dvmptfprodlem.14 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐺  ∈  ℂ ) | 
						
							| 15 |  | dvmptfprodlem.dvf | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐹 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐺 ) ) | 
						
							| 16 |  | dvmptfprodlem.f | ⊢ ( 𝑖  =  𝐸  →  𝐴  =  𝐹 ) | 
						
							| 17 |  | dvmptfprodlem.cg | ⊢ ( 𝑗  =  𝐸  →  𝐶  =  𝐺 ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑖 𝑥 | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑖 𝑋 | 
						
							| 20 | 18 19 | nfel | ⊢ Ⅎ 𝑖 𝑥  ∈  𝑋 | 
						
							| 21 | 2 20 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑥  ∈  𝑋 ) | 
						
							| 22 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Ⅎ 𝑖 𝐹 ) | 
						
							| 23 |  | snfi | ⊢ { 𝐸 }  ∈  Fin | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  { 𝐸 }  ∈  Fin ) | 
						
							| 25 |  | unfi | ⊢ ( ( 𝐷  ∈  Fin  ∧  { 𝐸 }  ∈  Fin )  →  ( 𝐷  ∪  { 𝐸 } )  ∈  Fin ) | 
						
							| 26 | 7 24 25 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ∪  { 𝐸 } )  ∈  Fin ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐷  ∪  { 𝐸 } )  ∈  Fin ) | 
						
							| 28 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) )  →  𝜑 ) | 
						
							| 29 | 10 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) )  →  𝑖  ∈  𝐼 ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) )  →  𝑖  ∈  𝐼 ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 32 | 28 30 31 6 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) )  →  𝐴  ∈  ℂ ) | 
						
							| 33 |  | snidg | ⊢ ( 𝐸  ∈  V  →  𝐸  ∈  { 𝐸 } ) | 
						
							| 34 | 8 33 | syl | ⊢ ( 𝜑  →  𝐸  ∈  { 𝐸 } ) | 
						
							| 35 |  | elun2 | ⊢ ( 𝐸  ∈  { 𝐸 }  →  𝐸  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐸  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 38 | 16 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  =  𝐸 )  →  𝐴  =  𝐹 ) | 
						
							| 39 | 21 22 27 32 37 38 | fprodsplit1f | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) 𝐴  =  ( 𝐹  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 ) ) | 
						
							| 40 |  | difundir | ⊢ ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } )  =  ( ( 𝐷  ∖  { 𝐸 } )  ∪  ( { 𝐸 }  ∖  { 𝐸 } ) ) | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } )  =  ( ( 𝐷  ∖  { 𝐸 } )  ∪  ( { 𝐸 }  ∖  { 𝐸 } ) ) ) | 
						
							| 42 |  | difsn | ⊢ ( ¬  𝐸  ∈  𝐷  →  ( 𝐷  ∖  { 𝐸 } )  =  𝐷 ) | 
						
							| 43 | 9 42 | syl | ⊢ ( 𝜑  →  ( 𝐷  ∖  { 𝐸 } )  =  𝐷 ) | 
						
							| 44 |  | difid | ⊢ ( { 𝐸 }  ∖  { 𝐸 } )  =  ∅ | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  ( { 𝐸 }  ∖  { 𝐸 } )  =  ∅ ) | 
						
							| 46 | 43 45 | uneq12d | ⊢ ( 𝜑  →  ( ( 𝐷  ∖  { 𝐸 } )  ∪  ( { 𝐸 }  ∖  { 𝐸 } ) )  =  ( 𝐷  ∪  ∅ ) ) | 
						
							| 47 |  | un0 | ⊢ ( 𝐷  ∪  ∅ )  =  𝐷 | 
						
							| 48 | 47 | a1i | ⊢ ( 𝜑  →  ( 𝐷  ∪  ∅ )  =  𝐷 ) | 
						
							| 49 | 41 46 48 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } )  =  𝐷 ) | 
						
							| 50 | 49 | prodeq1d | ⊢ ( 𝜑  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴  =  ∏ 𝑖  ∈  𝐷 𝐴 ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝜑  →  ( 𝐹  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 )  =  ( 𝐹  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 )  =  ( 𝐹  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) | 
						
							| 53 | 39 52 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) 𝐴  =  ( 𝐹  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) | 
						
							| 54 | 1 53 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐹  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐹  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) ) ) | 
						
							| 56 | 10 36 | sseldd | ⊢ ( 𝜑  →  𝐸  ∈  𝐼 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐸  ∈  𝐼 ) | 
						
							| 58 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝜑 ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 60 | 58 57 59 | 3jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) ) | 
						
							| 61 |  | nfcv | ⊢ Ⅎ 𝑖 𝐸 | 
						
							| 62 |  | nfv | ⊢ Ⅎ 𝑖 𝐸  ∈  𝐼 | 
						
							| 63 | 2 62 20 | nf3an | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑖 ℂ | 
						
							| 65 | 4 64 | nfel | ⊢ Ⅎ 𝑖 𝐹  ∈  ℂ | 
						
							| 66 | 63 65 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐹  ∈  ℂ ) | 
						
							| 67 |  | ancom | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  =  𝐸 )  ↔  ( 𝑖  =  𝐸  ∧  ( 𝜑  ∧  𝑥  ∈  𝑋 ) ) ) | 
						
							| 68 | 67 | imbi1i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  =  𝐸 )  →  𝐴  =  𝐹 )  ↔  ( ( 𝑖  =  𝐸  ∧  ( 𝜑  ∧  𝑥  ∈  𝑋 ) )  →  𝐴  =  𝐹 ) ) | 
						
							| 69 |  | eqcom | ⊢ ( 𝐴  =  𝐹  ↔  𝐹  =  𝐴 ) | 
						
							| 70 | 69 | imbi2i | ⊢ ( ( ( 𝑖  =  𝐸  ∧  ( 𝜑  ∧  𝑥  ∈  𝑋 ) )  →  𝐴  =  𝐹 )  ↔  ( ( 𝑖  =  𝐸  ∧  ( 𝜑  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  =  𝐴 ) ) | 
						
							| 71 | 68 70 | bitri | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  =  𝐸 )  →  𝐴  =  𝐹 )  ↔  ( ( 𝑖  =  𝐸  ∧  ( 𝜑  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  =  𝐴 ) ) | 
						
							| 72 | 38 71 | mpbi | ⊢ ( ( 𝑖  =  𝐸  ∧  ( 𝜑  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  =  𝐴 ) | 
						
							| 73 | 72 | 3adantr2 | ⊢ ( ( 𝑖  =  𝐸  ∧  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  =  𝐴 ) | 
						
							| 74 | 73 | 3adant2 | ⊢ ( ( 𝑖  =  𝐸  ∧  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ∧  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  =  𝐴 ) | 
						
							| 75 |  | simp3 | ⊢ ( ( 𝑖  =  𝐸  ∧  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ∧  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) ) | 
						
							| 76 |  | eleq1 | ⊢ ( 𝑖  =  𝐸  →  ( 𝑖  ∈  𝐼  ↔  𝐸  ∈  𝐼 ) ) | 
						
							| 77 | 76 | 3anbi2d | ⊢ ( 𝑖  =  𝐸  →  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) ) ) | 
						
							| 78 | 77 | imbi1d | ⊢ ( 𝑖  =  𝐸  →  ( ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) ) ) | 
						
							| 79 | 78 | biimpa | ⊢ ( ( 𝑖  =  𝐸  ∧  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) )  →  ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) ) | 
						
							| 80 | 79 | 3adant3 | ⊢ ( ( 𝑖  =  𝐸  ∧  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ∧  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) )  →  ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) ) | 
						
							| 81 | 75 80 | mpd | ⊢ ( ( 𝑖  =  𝐸  ∧  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ∧  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 82 | 74 81 | eqeltrd | ⊢ ( ( 𝑖  =  𝐸  ∧  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ∧  ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  ∈  ℂ ) | 
						
							| 83 | 82 | 3exp | ⊢ ( 𝑖  =  𝐸  →  ( ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  →  ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐹  ∈  ℂ ) ) ) | 
						
							| 84 | 6 | 2a1i | ⊢ ( 𝑖  =  𝐸  →  ( ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐹  ∈  ℂ )  →  ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) ) ) | 
						
							| 85 | 83 84 | impbid | ⊢ ( 𝑖  =  𝐸  →  ( ( ( 𝜑  ∧  𝑖  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐹  ∈  ℂ ) ) ) | 
						
							| 86 | 61 66 85 6 | vtoclgf | ⊢ ( 𝐸  ∈  𝐼  →  ( ( 𝜑  ∧  𝐸  ∈  𝐼  ∧  𝑥  ∈  𝑋 )  →  𝐹  ∈  ℂ ) ) | 
						
							| 87 | 57 60 86 | sylc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐹  ∈  ℂ ) | 
						
							| 88 | 58 7 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐷  ∈  Fin ) | 
						
							| 89 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  𝐷 )  →  𝜑 ) | 
						
							| 90 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  ( 𝐷  ∪  { 𝐸 } )  ⊆  𝐼 ) | 
						
							| 91 |  | elun1 | ⊢ ( 𝑖  ∈  𝐷  →  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 93 | 90 92 | sseldd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  𝑖  ∈  𝐼 ) | 
						
							| 94 | 93 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  𝐷 )  →  𝑖  ∈  𝐼 ) | 
						
							| 95 | 59 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  𝐷 )  →  𝑥  ∈  𝑋 ) | 
						
							| 96 | 89 94 95 6 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  𝐷 )  →  𝐴  ∈  ℂ ) | 
						
							| 97 | 21 88 96 | fprodclf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑖  ∈  𝐷 𝐴  ∈  ℂ ) | 
						
							| 98 |  | nfv | ⊢ Ⅎ 𝑗 𝑥  ∈  𝑋 | 
						
							| 99 | 3 98 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑥  ∈  𝑋 ) | 
						
							| 100 |  | diffi | ⊢ ( 𝐷  ∈  Fin  →  ( 𝐷  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 101 | 7 100 | syl | ⊢ ( 𝜑  →  ( 𝐷  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐷  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 103 |  | eldifi | ⊢ ( 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } )  →  𝑖  ∈  𝐷 ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) )  →  𝑖  ∈  𝐷 ) | 
						
							| 105 | 104 96 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) )  →  𝐴  ∈  ℂ ) | 
						
							| 106 | 21 102 105 | fprodclf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ∈  ℂ ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ∈  ℂ ) | 
						
							| 108 | 12 107 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ∈  ℂ ) | 
						
							| 109 | 99 88 108 | fsumclf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ∈  ℂ ) | 
						
							| 110 | 1 11 87 14 15 97 109 13 | dvmptmulf | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐹  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐺  ·  ∏ 𝑖  ∈  𝐷 𝐴 )  +  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) ) ) | 
						
							| 111 |  | nfcv | ⊢ Ⅎ 𝑗  · | 
						
							| 112 |  | nfcv | ⊢ Ⅎ 𝑗 ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 | 
						
							| 113 | 5 111 112 | nfov | ⊢ Ⅎ 𝑗 ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 ) | 
						
							| 114 | 58 8 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐸  ∈  V ) | 
						
							| 115 | 58 9 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ¬  𝐸  ∈  𝐷 ) | 
						
							| 116 |  | diffi | ⊢ ( ( 𝐷  ∪  { 𝐸 } )  ∈  Fin  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 117 | 26 116 | syl | ⊢ ( 𝜑  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 119 |  | eldifi | ⊢ ( 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  →  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 120 | 119 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) )  →  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 121 | 120 32 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) )  →  𝐴  ∈  ℂ ) | 
						
							| 122 | 21 118 121 | fprodclf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴  ∈  ℂ ) | 
						
							| 123 | 122 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴  ∈  ℂ ) | 
						
							| 124 | 12 123 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  ∈  ℂ ) | 
						
							| 125 |  | sneq | ⊢ ( 𝑗  =  𝐸  →  { 𝑗 }  =  { 𝐸 } ) | 
						
							| 126 | 125 | difeq2d | ⊢ ( 𝑗  =  𝐸  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  =  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) ) | 
						
							| 127 | 126 | prodeq1d | ⊢ ( 𝑗  =  𝐸  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴  =  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 ) | 
						
							| 128 | 17 127 | oveq12d | ⊢ ( 𝑗  =  𝐸  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 ) ) | 
						
							| 129 | 49 7 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } )  ∈  Fin ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } )  ∈  Fin ) | 
						
							| 131 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) )  →  𝜑 ) | 
						
							| 132 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) )  →  ( 𝐷  ∪  { 𝐸 } )  ⊆  𝐼 ) | 
						
							| 133 |  | eldifi | ⊢ ( 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } )  →  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 134 | 133 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) )  →  𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) ) | 
						
							| 135 | 132 134 | sseldd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) )  →  𝑖  ∈  𝐼 ) | 
						
							| 136 | 135 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) )  →  𝑖  ∈  𝐼 ) | 
						
							| 137 | 59 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 138 | 131 136 137 6 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) )  →  𝐴  ∈  ℂ ) | 
						
							| 139 | 21 130 138 | fprodclf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴  ∈  ℂ ) | 
						
							| 140 | 14 139 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 )  ∈  ℂ ) | 
						
							| 141 | 99 113 88 114 115 124 128 140 | fsumsplitsn | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑗  ∈  ( 𝐷  ∪  { 𝐸 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  +  ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 ) ) ) | 
						
							| 142 |  | difundir | ⊢ ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  =  ( ( 𝐷  ∖  { 𝑗 } )  ∪  ( { 𝐸 }  ∖  { 𝑗 } ) ) | 
						
							| 143 | 142 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  =  ( ( 𝐷  ∖  { 𝑗 } )  ∪  ( { 𝐸 }  ∖  { 𝑗 } ) ) ) | 
						
							| 144 |  | nfv | ⊢ Ⅎ 𝑥 𝑗  ∈  𝐷 | 
						
							| 145 | 1 144 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑗  ∈  𝐷 ) | 
						
							| 146 |  | elsni | ⊢ ( 𝑥  ∈  { 𝐸 }  →  𝑥  =  𝐸 ) | 
						
							| 147 | 146 | eqcomd | ⊢ ( 𝑥  ∈  { 𝐸 }  →  𝐸  =  𝑥 ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( 𝑥  ∈  { 𝐸 }  ∧  𝑥  =  𝑗 )  →  𝐸  =  𝑥 ) | 
						
							| 149 |  | simpr | ⊢ ( ( 𝑥  ∈  { 𝐸 }  ∧  𝑥  =  𝑗 )  →  𝑥  =  𝑗 ) | 
						
							| 150 |  | eqidd | ⊢ ( ( 𝑥  ∈  { 𝐸 }  ∧  𝑥  =  𝑗 )  →  𝑗  =  𝑗 ) | 
						
							| 151 | 148 149 150 | 3eqtrd | ⊢ ( ( 𝑥  ∈  { 𝐸 }  ∧  𝑥  =  𝑗 )  →  𝐸  =  𝑗 ) | 
						
							| 152 | 151 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  ∧  𝑥  ∈  { 𝐸 } )  ∧  𝑥  =  𝑗 )  →  𝐸  =  𝑗 ) | 
						
							| 153 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  ∧  𝑥  ∈  { 𝐸 } )  ∧  𝑥  =  𝑗 )  →  𝑗  ∈  𝐷 ) | 
						
							| 154 | 152 153 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  ∧  𝑥  ∈  { 𝐸 } )  ∧  𝑥  =  𝑗 )  →  𝐸  ∈  𝐷 ) | 
						
							| 155 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  ∧  𝑥  ∈  { 𝐸 } )  ∧  𝑥  =  𝑗 )  →  ¬  𝐸  ∈  𝐷 ) | 
						
							| 156 | 154 155 | pm2.65da | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  ∧  𝑥  ∈  { 𝐸 } )  →  ¬  𝑥  =  𝑗 ) | 
						
							| 157 |  | velsn | ⊢ ( 𝑥  ∈  { 𝑗 }  ↔  𝑥  =  𝑗 ) | 
						
							| 158 | 156 157 | sylnibr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  ∧  𝑥  ∈  { 𝐸 } )  →  ¬  𝑥  ∈  { 𝑗 } ) | 
						
							| 159 | 158 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ( 𝑥  ∈  { 𝐸 }  →  ¬  𝑥  ∈  { 𝑗 } ) ) | 
						
							| 160 | 145 159 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ∀ 𝑥  ∈  { 𝐸 } ¬  𝑥  ∈  { 𝑗 } ) | 
						
							| 161 |  | disj | ⊢ ( ( { 𝐸 }  ∩  { 𝑗 } )  =  ∅  ↔  ∀ 𝑥  ∈  { 𝐸 } ¬  𝑥  ∈  { 𝑗 } ) | 
						
							| 162 | 160 161 | sylibr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ( { 𝐸 }  ∩  { 𝑗 } )  =  ∅ ) | 
						
							| 163 |  | disjdif2 | ⊢ ( ( { 𝐸 }  ∩  { 𝑗 } )  =  ∅  →  ( { 𝐸 }  ∖  { 𝑗 } )  =  { 𝐸 } ) | 
						
							| 164 | 162 163 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ( { 𝐸 }  ∖  { 𝑗 } )  =  { 𝐸 } ) | 
						
							| 165 | 164 | uneq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ( ( 𝐷  ∖  { 𝑗 } )  ∪  ( { 𝐸 }  ∖  { 𝑗 } ) )  =  ( ( 𝐷  ∖  { 𝑗 } )  ∪  { 𝐸 } ) ) | 
						
							| 166 | 143 165 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } )  =  ( ( 𝐷  ∖  { 𝑗 } )  ∪  { 𝐸 } ) ) | 
						
							| 167 | 166 | prodeq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴  =  ∏ 𝑖  ∈  ( ( 𝐷  ∖  { 𝑗 } )  ∪  { 𝐸 } ) 𝐴 ) | 
						
							| 168 | 167 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴  =  ∏ 𝑖  ∈  ( ( 𝐷  ∖  { 𝑗 } )  ∪  { 𝐸 } ) 𝐴 ) | 
						
							| 169 |  | nfv | ⊢ Ⅎ 𝑖 𝑗  ∈  𝐷 | 
						
							| 170 | 21 169 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 ) | 
						
							| 171 | 102 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( 𝐷  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 172 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  𝜑 ) | 
						
							| 173 | 172 8 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  𝐸  ∈  V ) | 
						
							| 174 |  | id | ⊢ ( ¬  𝐸  ∈  𝐷  →  ¬  𝐸  ∈  𝐷 ) | 
						
							| 175 | 174 | intnanrd | ⊢ ( ¬  𝐸  ∈  𝐷  →  ¬  ( 𝐸  ∈  𝐷  ∧  ¬  𝐸  ∈  { 𝑗 } ) ) | 
						
							| 176 | 174 175 | syl | ⊢ ( ¬  𝐸  ∈  𝐷  →  ¬  ( 𝐸  ∈  𝐷  ∧  ¬  𝐸  ∈  { 𝑗 } ) ) | 
						
							| 177 |  | eldif | ⊢ ( 𝐸  ∈  ( 𝐷  ∖  { 𝑗 } )  ↔  ( 𝐸  ∈  𝐷  ∧  ¬  𝐸  ∈  { 𝑗 } ) ) | 
						
							| 178 | 176 177 | sylnibr | ⊢ ( ¬  𝐸  ∈  𝐷  →  ¬  𝐸  ∈  ( 𝐷  ∖  { 𝑗 } ) ) | 
						
							| 179 | 9 178 | syl | ⊢ ( 𝜑  →  ¬  𝐸  ∈  ( 𝐷  ∖  { 𝑗 } ) ) | 
						
							| 180 | 172 179 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ¬  𝐸  ∈  ( 𝐷  ∖  { 𝑗 } ) ) | 
						
							| 181 | 105 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  ∧  𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) )  →  𝐴  ∈  ℂ ) | 
						
							| 182 | 87 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  𝐹  ∈  ℂ ) | 
						
							| 183 | 170 4 171 173 180 181 16 182 | fprodsplitsn | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ∏ 𝑖  ∈  ( ( 𝐷  ∖  { 𝑗 } )  ∪  { 𝐸 } ) 𝐴  =  ( ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ·  𝐹 ) ) | 
						
							| 184 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ·  𝐹 )  =  ( ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ·  𝐹 ) ) | 
						
							| 185 | 168 183 184 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴  =  ( ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ·  𝐹 ) ) | 
						
							| 186 | 185 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  ( 𝐶  ·  ( ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ·  𝐹 ) ) ) | 
						
							| 187 | 12 107 182 | mulassd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 )  =  ( 𝐶  ·  ( ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ·  𝐹 ) ) ) | 
						
							| 188 | 187 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( 𝐶  ·  ( ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴  ·  𝐹 ) )  =  ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 189 | 186 188 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  𝐷 )  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 190 | 189 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑗  ∈  𝐷  →  ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) ) | 
						
							| 191 | 99 190 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 192 | 191 | sumeq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  Σ 𝑗  ∈  𝐷 ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 193 | 99 88 87 108 | fsummulc1f | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 )  =  Σ 𝑗  ∈  𝐷 ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 194 | 193 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑗  ∈  𝐷 ( ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 )  =  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 195 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 )  =  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 196 | 192 194 195 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  =  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) | 
						
							| 197 | 109 87 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 )  ∈  ℂ ) | 
						
							| 198 | 196 197 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  ∈  ℂ ) | 
						
							| 199 | 198 140 | addcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 )  +  ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 ) )  =  ( ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 )  +  Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 200 | 50 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 )  =  ( 𝐺  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) | 
						
							| 201 | 200 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 )  =  ( 𝐺  ·  ∏ 𝑖  ∈  𝐷 𝐴 ) ) | 
						
							| 202 | 201 196 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐺  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝐸 } ) 𝐴 )  +  Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 ) )  =  ( ( 𝐺  ·  ∏ 𝑖  ∈  𝐷 𝐴 )  +  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) ) | 
						
							| 203 | 141 199 202 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐺  ·  ∏ 𝑖  ∈  𝐷 𝐴 )  +  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) )  =  Σ 𝑗  ∈  ( 𝐷  ∪  { 𝐸 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 ) ) | 
						
							| 204 | 1 203 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐺  ·  ∏ 𝑖  ∈  𝐷 𝐴 )  +  ( Σ 𝑗  ∈  𝐷 ( 𝐶  ·  ∏ 𝑖  ∈  ( 𝐷  ∖  { 𝑗 } ) 𝐴 )  ·  𝐹 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝐷  ∪  { 𝐸 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) | 
						
							| 205 | 55 110 204 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑖  ∈  ( 𝐷  ∪  { 𝐸 } ) 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑗  ∈  ( 𝐷  ∪  { 𝐸 } ) ( 𝐶  ·  ∏ 𝑖  ∈  ( ( 𝐷  ∪  { 𝐸 } )  ∖  { 𝑗 } ) 𝐴 ) ) ) |