Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptfsum.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
2 |
|
dvmptfsum.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
dvmptfsum.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
4 |
|
dvmptfsum.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
5 |
|
dvmptfsum.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
6 |
|
dvmptfsum.a |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
7 |
|
dvmptfsum.b |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
8 |
|
dvmptfsum.d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
9 |
|
ssid |
⊢ 𝐼 ⊆ 𝐼 |
10 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼 ) ) |
11 |
|
sumeq1 |
⊢ ( 𝑎 = ∅ → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ ∅ 𝐴 ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) ) |
14 |
|
sumeq1 |
⊢ ( 𝑎 = ∅ → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ ∅ 𝐵 ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) |
17 |
10 16
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) ) ) |
19 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐼 ↔ 𝑏 ⊆ 𝐼 ) ) |
20 |
|
sumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ 𝑏 𝐴 ) |
21 |
20
|
mpteq2dv |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) ) |
23 |
|
sumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ 𝑏 𝐵 ) |
24 |
23
|
mpteq2dv |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) |
26 |
19 25
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ) ) |
28 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐼 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) |
29 |
|
sumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) |
30 |
29
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) ) |
32 |
|
sumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) |
33 |
32
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) |
34 |
31 33
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) |
35 |
28 34
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
37 |
|
sseq1 |
⊢ ( 𝑎 = 𝐼 → ( 𝑎 ⊆ 𝐼 ↔ 𝐼 ⊆ 𝐼 ) ) |
38 |
|
sumeq1 |
⊢ ( 𝑎 = 𝐼 → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ 𝐼 𝐴 ) |
39 |
38
|
mpteq2dv |
⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑎 = 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) ) |
41 |
|
sumeq1 |
⊢ ( 𝑎 = 𝐼 → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ 𝐼 𝐵 ) |
42 |
41
|
mpteq2dv |
⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) |
43 |
40 42
|
eqeq12d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) |
44 |
37 43
|
imbi12d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) |
45 |
44
|
imbi2d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) ) |
46 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℂ ) |
47 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
48 |
3 47
|
dvmptc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 0 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
49 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
50 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
51 |
3 50
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
52 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
53 |
49 51 52
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
54 |
1 53
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
55 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) ∧ 𝑋 ∈ 𝐽 ) → 𝑋 ⊆ 𝑆 ) |
56 |
54 4 55
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
57 |
3 46 46 48 56 1 2 4
|
dvmptres |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
58 |
|
sum0 |
⊢ Σ 𝑖 ∈ ∅ 𝐴 = 0 |
59 |
58
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
60 |
59
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
61 |
|
sum0 |
⊢ Σ 𝑖 ∈ ∅ 𝐵 = 0 |
62 |
61
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
63 |
57 60 62
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) |
64 |
63
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) |
65 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
66 |
|
sstr |
⊢ ( ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → 𝑏 ⊆ 𝐼 ) |
67 |
65 66
|
mpan |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑏 ⊆ 𝐼 ) |
68 |
67
|
imim1i |
⊢ ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) |
69 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝜑 ) |
70 |
69 3
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
71 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝐼 ∈ Fin ) |
72 |
67
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑏 ⊆ 𝐼 ) |
73 |
71 72
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑏 ∈ Fin ) |
74 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝜑 ) |
75 |
72
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝑖 ∈ 𝐼 ) |
76 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝑎 ∈ 𝑋 ) |
77 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) |
78 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
79 |
78
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ |
80 |
77 79
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
81 |
|
eleq1w |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ 𝑋 ↔ 𝑎 ∈ 𝑋 ) ) |
82 |
81
|
3anbi3d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) ) |
83 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐴 = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
84 |
83
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
85 |
82 84
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) ) |
86 |
80 85 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
87 |
74 75 76 86
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
88 |
73 87
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
89 |
88
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
90 |
|
sumex |
⊢ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V |
91 |
90
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) |
92 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ 𝑏 𝐴 |
93 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
94 |
93 78
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
95 |
83
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ 𝑏 𝐴 = Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
96 |
92 94 95
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
97 |
96
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
98 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ 𝑏 𝐵 |
99 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
100 |
93 99
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
101 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
102 |
101
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ 𝑏 𝐵 = Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
103 |
98 100 102
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
104 |
97 103
|
eqeq12i |
⊢ ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ↔ ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
105 |
104
|
biimpi |
⊢ ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
106 |
105
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
107 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝜑 ) |
108 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) |
109 |
|
sstr |
⊢ ( ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → { 𝑐 } ⊆ 𝐼 ) |
110 |
108 109
|
mpan |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → { 𝑐 } ⊆ 𝐼 ) |
111 |
|
vex |
⊢ 𝑐 ∈ V |
112 |
111
|
snss |
⊢ ( 𝑐 ∈ 𝐼 ↔ { 𝑐 } ⊆ 𝐼 ) |
113 |
110 112
|
sylibr |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑐 ∈ 𝐼 ) |
114 |
113
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑐 ∈ 𝐼 ) |
115 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ 𝑋 ) |
116 |
6
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 ∈ ℂ ) |
117 |
116
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼 ) ) → 𝐴 ∈ ℂ ) |
118 |
117
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ ) |
119 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
120 |
119
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ |
121 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
122 |
121
|
eleq1d |
⊢ ( 𝑖 = 𝑐 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ↔ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
123 |
79 120 84 122
|
rspc2 |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
124 |
123
|
ancoms |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
125 |
118 124
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
126 |
107 114 115 125
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
127 |
126
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
128 |
7
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐵 ∈ ℂ ) |
129 |
128
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼 ) ) → 𝐵 ∈ ℂ ) |
130 |
129
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ ) |
131 |
99
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ |
132 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
133 |
132
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ |
134 |
101
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
135 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
136 |
135
|
eleq1d |
⊢ ( 𝑖 = 𝑐 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ↔ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
137 |
131 133 134 136
|
rspc2 |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
138 |
137
|
ancoms |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
139 |
130 138
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
140 |
107 114 115 139
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
141 |
140
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
142 |
113
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝑐 ∈ 𝐼 ) |
143 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) |
144 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑆 |
145 |
|
nfcv |
⊢ Ⅎ 𝑖 D |
146 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑋 |
147 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ 𝐴 |
148 |
146 147
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
149 |
144 145 148
|
nfov |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
150 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ 𝐵 |
151 |
146 150
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
152 |
149 151
|
nfeq |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
153 |
143 152
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
154 |
|
eleq1w |
⊢ ( 𝑖 = 𝑐 → ( 𝑖 ∈ 𝐼 ↔ 𝑐 ∈ 𝐼 ) ) |
155 |
154
|
anbi2d |
⊢ ( 𝑖 = 𝑐 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ↔ ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ) ) |
156 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
157 |
156
|
mpteq2dv |
⊢ ( 𝑖 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
158 |
157
|
oveq2d |
⊢ ( 𝑖 = 𝑐 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) ) |
159 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
160 |
159
|
mpteq2dv |
⊢ ( 𝑖 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
161 |
158 160
|
eqeq12d |
⊢ ( 𝑖 = 𝑐 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) ) |
162 |
155 161
|
imbi12d |
⊢ ( 𝑖 = 𝑐 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) ) ) |
163 |
153 162 8
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
164 |
|
nfcv |
⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑖 ⦌ 𝐴 |
165 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
166 |
165 78
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
167 |
83
|
csbeq2dv |
⊢ ( 𝑥 = 𝑎 → ⦋ 𝑐 / 𝑖 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
168 |
164 166 167
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
169 |
168
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
170 |
|
nfcv |
⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑖 ⦌ 𝐵 |
171 |
165 99
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
172 |
101
|
csbeq2dv |
⊢ ( 𝑥 = 𝑎 → ⦋ 𝑐 / 𝑖 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
173 |
170 171 172
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
174 |
163 169 173
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
175 |
69 142 174
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
176 |
70 89 91 106 127 141 175
|
dvmptadd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
177 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 |
178 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑏 ∪ { 𝑐 } ) |
179 |
178 78
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
180 |
83
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
181 |
177 179 180
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
182 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ¬ 𝑐 ∈ 𝑏 ) |
183 |
|
disjsn |
⊢ ( ( 𝑏 ∩ { 𝑐 } ) = ∅ ↔ ¬ 𝑐 ∈ 𝑏 ) |
184 |
182 183
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∩ { 𝑐 } ) = ∅ ) |
185 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) = ( 𝑏 ∪ { 𝑐 } ) ) |
186 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) |
187 |
71 186
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) ∈ Fin ) |
188 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝜑 ) |
189 |
186
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑖 ∈ 𝐼 ) |
190 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑎 ∈ 𝑋 ) |
191 |
188 189 190 86
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
192 |
184 185 187 191
|
fsumsplit |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
193 |
|
sumsns |
⊢ ( ( 𝑐 ∈ V ∧ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
194 |
111 126 193
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
195 |
194
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
196 |
192 195
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
197 |
196
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
198 |
181 197
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
199 |
198
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
200 |
199
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) ) |
201 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 |
202 |
178 99
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
203 |
101
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
204 |
201 202 203
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
205 |
77 131
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
206 |
82 134
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) ) |
207 |
205 206 7
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
208 |
188 189 190 207
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
209 |
184 185 187 208
|
fsumsplit |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
210 |
|
sumsns |
⊢ ( ( 𝑐 ∈ V ∧ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
211 |
111 140 210
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
212 |
211
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
213 |
209 212
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
214 |
213
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
215 |
204 214
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
216 |
215
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
217 |
176 200 216
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) |
218 |
217
|
exp32 |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
219 |
218
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
220 |
68 219
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
221 |
220
|
expcom |
⊢ ( ¬ 𝑐 ∈ 𝑏 → ( 𝜑 → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
222 |
221
|
adantl |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( 𝜑 → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
223 |
222
|
a2d |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝜑 → ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝜑 → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
224 |
18 27 36 45 64 223
|
findcard2s |
⊢ ( 𝐼 ∈ Fin → ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) |
225 |
5 224
|
mpcom |
⊢ ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) |
226 |
9 225
|
mpi |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) |