| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptfsum.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
| 2 |
|
dvmptfsum.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 3 |
|
dvmptfsum.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 4 |
|
dvmptfsum.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 5 |
|
dvmptfsum.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 6 |
|
dvmptfsum.a |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 7 |
|
dvmptfsum.b |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 8 |
|
dvmptfsum.d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 9 |
|
ssid |
⊢ 𝐼 ⊆ 𝐼 |
| 10 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼 ) ) |
| 11 |
|
sumeq1 |
⊢ ( 𝑎 = ∅ → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ ∅ 𝐴 ) |
| 12 |
11
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) ) |
| 14 |
|
sumeq1 |
⊢ ( 𝑎 = ∅ → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ ∅ 𝐵 ) |
| 15 |
14
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) |
| 16 |
13 15
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) |
| 17 |
10 16
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) ) ) |
| 19 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐼 ↔ 𝑏 ⊆ 𝐼 ) ) |
| 20 |
|
sumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ 𝑏 𝐴 ) |
| 21 |
20
|
mpteq2dv |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) ) |
| 23 |
|
sumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ 𝑏 𝐵 ) |
| 24 |
23
|
mpteq2dv |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) |
| 25 |
22 24
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) |
| 26 |
19 25
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ) ) |
| 28 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐼 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) |
| 29 |
|
sumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) |
| 30 |
29
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) ) |
| 32 |
|
sumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) |
| 33 |
32
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) |
| 34 |
31 33
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) |
| 35 |
28 34
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 36 |
35
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 37 |
|
sseq1 |
⊢ ( 𝑎 = 𝐼 → ( 𝑎 ⊆ 𝐼 ↔ 𝐼 ⊆ 𝐼 ) ) |
| 38 |
|
sumeq1 |
⊢ ( 𝑎 = 𝐼 → Σ 𝑖 ∈ 𝑎 𝐴 = Σ 𝑖 ∈ 𝐼 𝐴 ) |
| 39 |
38
|
mpteq2dv |
⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑎 = 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) ) |
| 41 |
|
sumeq1 |
⊢ ( 𝑎 = 𝐼 → Σ 𝑖 ∈ 𝑎 𝐵 = Σ 𝑖 ∈ 𝐼 𝐵 ) |
| 42 |
41
|
mpteq2dv |
⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) |
| 43 |
40 42
|
eqeq12d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) |
| 44 |
37 43
|
imbi12d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ↔ ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) |
| 45 |
44
|
imbi2d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝜑 → ( 𝑎 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑎 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) ) |
| 46 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℂ ) |
| 47 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 48 |
3 47
|
dvmptc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 0 ) ) = ( 𝑥 ∈ 𝑆 ↦ 0 ) ) |
| 49 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 50 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 51 |
3 50
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 52 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 53 |
49 51 52
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 54 |
1 53
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
| 55 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) ∧ 𝑋 ∈ 𝐽 ) → 𝑋 ⊆ 𝑆 ) |
| 56 |
54 4 55
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 57 |
3 46 46 48 56 1 2 4
|
dvmptres |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 58 |
|
sum0 |
⊢ Σ 𝑖 ∈ ∅ 𝐴 = 0 |
| 59 |
58
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 60 |
59
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 61 |
|
sum0 |
⊢ Σ 𝑖 ∈ ∅ 𝐵 = 0 |
| 62 |
61
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 63 |
57 60 62
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) |
| 64 |
63
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ∅ 𝐵 ) ) ) |
| 65 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
| 66 |
|
sstr |
⊢ ( ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → 𝑏 ⊆ 𝐼 ) |
| 67 |
65 66
|
mpan |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑏 ⊆ 𝐼 ) |
| 68 |
67
|
imim1i |
⊢ ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) |
| 69 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝜑 ) |
| 70 |
69 3
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 71 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝐼 ∈ Fin ) |
| 72 |
67
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑏 ⊆ 𝐼 ) |
| 73 |
71 72
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑏 ∈ Fin ) |
| 74 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝜑 ) |
| 75 |
72
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝑖 ∈ 𝐼 ) |
| 76 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → 𝑎 ∈ 𝑋 ) |
| 77 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) |
| 78 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 79 |
78
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ |
| 80 |
77 79
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 81 |
|
eleq1w |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ 𝑋 ↔ 𝑎 ∈ 𝑋 ) ) |
| 82 |
81
|
3anbi3d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) ) |
| 83 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐴 = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 84 |
83
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 85 |
82 84
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) ) |
| 86 |
80 85 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 87 |
74 75 76 86
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝑏 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 88 |
73 87
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 89 |
88
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 90 |
|
sumex |
⊢ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V |
| 91 |
90
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 92 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ 𝑏 𝐴 |
| 93 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
| 94 |
93 78
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 95 |
83
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ 𝑏 𝐴 = Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 96 |
92 94 95
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 97 |
96
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 98 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ 𝑏 𝐵 |
| 99 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 100 |
93 99
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 101 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 102 |
101
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ 𝑏 𝐵 = Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 103 |
98 100 102
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 104 |
97 103
|
eqeq12i |
⊢ ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ↔ ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 105 |
104
|
biimpi |
⊢ ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 106 |
105
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 107 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝜑 ) |
| 108 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) |
| 109 |
|
sstr |
⊢ ( ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → { 𝑐 } ⊆ 𝐼 ) |
| 110 |
108 109
|
mpan |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → { 𝑐 } ⊆ 𝐼 ) |
| 111 |
|
vex |
⊢ 𝑐 ∈ V |
| 112 |
111
|
snss |
⊢ ( 𝑐 ∈ 𝐼 ↔ { 𝑐 } ⊆ 𝐼 ) |
| 113 |
110 112
|
sylibr |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑐 ∈ 𝐼 ) |
| 114 |
113
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑐 ∈ 𝐼 ) |
| 115 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ 𝑋 ) |
| 116 |
6
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 ∈ ℂ ) |
| 117 |
116
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼 ) ) → 𝐴 ∈ ℂ ) |
| 118 |
117
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ ) |
| 119 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 120 |
119
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ |
| 121 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 122 |
121
|
eleq1d |
⊢ ( 𝑖 = 𝑐 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ↔ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 123 |
79 120 84 122
|
rspc2 |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 124 |
123
|
ancoms |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 125 |
118 124
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 126 |
107 114 115 125
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 127 |
126
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 128 |
7
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐵 ∈ ℂ ) |
| 129 |
128
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼 ) ) → 𝐵 ∈ ℂ ) |
| 130 |
129
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ ) |
| 131 |
99
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 132 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 133 |
132
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 134 |
101
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 135 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 136 |
135
|
eleq1d |
⊢ ( 𝑖 = 𝑐 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ↔ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 137 |
131 133 134 136
|
rspc2 |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 138 |
137
|
ancoms |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 139 |
130 138
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 140 |
107 114 115 139
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 141 |
140
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 142 |
113
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → 𝑐 ∈ 𝐼 ) |
| 143 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) |
| 144 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑆 |
| 145 |
|
nfcv |
⊢ Ⅎ 𝑖 D |
| 146 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑋 |
| 147 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ 𝐴 |
| 148 |
146 147
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
| 149 |
144 145 148
|
nfov |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
| 150 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ 𝐵 |
| 151 |
146 150
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
| 152 |
149 151
|
nfeq |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
| 153 |
143 152
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
| 154 |
|
eleq1w |
⊢ ( 𝑖 = 𝑐 → ( 𝑖 ∈ 𝐼 ↔ 𝑐 ∈ 𝐼 ) ) |
| 155 |
154
|
anbi2d |
⊢ ( 𝑖 = 𝑐 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ↔ ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ) ) |
| 156 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
| 157 |
156
|
mpteq2dv |
⊢ ( 𝑖 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
| 158 |
157
|
oveq2d |
⊢ ( 𝑖 = 𝑐 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) ) |
| 159 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) |
| 160 |
159
|
mpteq2dv |
⊢ ( 𝑖 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
| 161 |
158 160
|
eqeq12d |
⊢ ( 𝑖 = 𝑐 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) ) |
| 162 |
155 161
|
imbi12d |
⊢ ( 𝑖 = 𝑐 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) ) ) |
| 163 |
153 162 8
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) ) |
| 164 |
|
nfcv |
⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑖 ⦌ 𝐴 |
| 165 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
| 166 |
165 78
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 167 |
83
|
csbeq2dv |
⊢ ( 𝑥 = 𝑎 → ⦋ 𝑐 / 𝑖 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 168 |
164 166 167
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 169 |
168
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 170 |
|
nfcv |
⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑖 ⦌ 𝐵 |
| 171 |
165 99
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 172 |
101
|
csbeq2dv |
⊢ ( 𝑥 = 𝑎 → ⦋ 𝑐 / 𝑖 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 173 |
170 171 172
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 174 |
163 169 173
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 175 |
69 142 174
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 176 |
70 89 91 106 127 141 175
|
dvmptadd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 177 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 |
| 178 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑏 ∪ { 𝑐 } ) |
| 179 |
178 78
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
| 180 |
83
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 181 |
177 179 180
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 182 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ¬ 𝑐 ∈ 𝑏 ) |
| 183 |
|
disjsn |
⊢ ( ( 𝑏 ∩ { 𝑐 } ) = ∅ ↔ ¬ 𝑐 ∈ 𝑏 ) |
| 184 |
182 183
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∩ { 𝑐 } ) = ∅ ) |
| 185 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) = ( 𝑏 ∪ { 𝑐 } ) ) |
| 186 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) |
| 187 |
71 186
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 ∪ { 𝑐 } ) ∈ Fin ) |
| 188 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝜑 ) |
| 189 |
186
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑖 ∈ 𝐼 ) |
| 190 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑎 ∈ 𝑋 ) |
| 191 |
188 189 190 86
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 192 |
184 185 187 191
|
fsumsplit |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 193 |
|
sumsns |
⊢ ( ( 𝑐 ∈ V ∧ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℂ ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 194 |
111 126 193
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
| 195 |
194
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 196 |
192 195
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
| 197 |
196
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
| 198 |
181 197
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
| 199 |
198
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
| 200 |
199
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑆 D ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) ) |
| 201 |
|
nfcv |
⊢ Ⅎ 𝑎 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 |
| 202 |
178 99
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 203 |
101
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑎 → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 = Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 204 |
201 202 203
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 205 |
77 131
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 206 |
82 134
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 207 |
205 206 7
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 208 |
188 189 190 207
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 209 |
184 185 187 208
|
fsumsplit |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 210 |
|
sumsns |
⊢ ( ( 𝑐 ∈ V ∧ ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 211 |
111 140 210
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 212 |
211
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + Σ 𝑖 ∈ { 𝑐 } ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 213 |
209 212
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑎 ∈ 𝑋 ) → Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 = ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 214 |
213
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑎 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 215 |
204 214
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 216 |
215
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) = ( 𝑎 ∈ 𝑋 ↦ ( Σ 𝑖 ∈ 𝑏 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 + ⦋ 𝑐 / 𝑖 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) ) |
| 217 |
176 200 216
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) |
| 218 |
217
|
exp32 |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 219 |
218
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 220 |
68 219
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) |
| 221 |
220
|
expcom |
⊢ ( ¬ 𝑐 ∈ 𝑏 → ( 𝜑 → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 222 |
221
|
adantl |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( 𝜑 → ( ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 223 |
222
|
a2d |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝜑 → ( 𝑏 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝑏 𝐵 ) ) ) → ( 𝜑 → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐵 ) ) ) ) ) |
| 224 |
18 27 36 45 64 223
|
findcard2s |
⊢ ( 𝐼 ∈ Fin → ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) ) |
| 225 |
5 224
|
mpcom |
⊢ ( 𝜑 → ( 𝐼 ⊆ 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) ) |
| 226 |
9 225
|
mpi |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ 𝐼 𝐵 ) ) |