Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptid.1 |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
3 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
4 |
|
toponmax |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
5 |
3 4
|
mp1i |
⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
6 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
8 |
|
df-ss |
⊢ ( 𝑆 ⊆ ℂ ↔ ( 𝑆 ∩ ℂ ) = 𝑆 ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∩ ℂ ) = 𝑆 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
11 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
12 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
13 |
12
|
eqcomi |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) = ( I ↾ ℂ ) |
14 |
13
|
oveq2i |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( ℂ D ( I ↾ ℂ ) ) |
15 |
|
dvid |
⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) |
16 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
17 |
14 15 16
|
3eqtri |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
19 |
2 1 5 9 10 11 18
|
dvmptres3 |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ 1 ) ) |