Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptidg.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptidg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
4 |
|
sseq1 |
⊢ ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) ) |
5 |
3 4
|
mpbiri |
⊢ ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) |
6 |
|
eqimss |
⊢ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) |
7 |
5 6
|
pm3.2i |
⊢ ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) |
8 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
10 |
|
pm3.44 |
⊢ ( ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) → ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ ) ) |
11 |
7 9 10
|
mpsyl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
12 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℂ ) |
13 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 1 ∈ ℝ ) |
14 |
1
|
dvmptid |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ 1 ) ) |
15 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
16 |
15
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
18 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
19 |
17 11 18
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
20 |
|
toponss |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ 𝐴 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) |
21 |
19 2 20
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
22 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
23 |
1 12 13 14 21 22 15 2
|
dvmptres |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 1 ) ) |