Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptcj.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
2 |
|
dvmptcj.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
dvmptcj.da |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
4 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
5 |
4
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
6 |
1
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
7 |
1 6
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
8 |
5 1 2 3
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
9 |
8
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
10 |
8 9
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ∈ ℂ ) |
11 |
1 2 3
|
dvmptcj |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐵 ) ) ) |
12 |
5 1 2 3 6 9 11
|
dvmptsub |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ) ) |
13 |
|
2mulicn |
⊢ ( 2 · i ) ∈ ℂ |
14 |
|
2muline0 |
⊢ ( 2 · i ) ≠ 0 |
15 |
13 14
|
reccli |
⊢ ( 1 / ( 2 · i ) ) ∈ ℂ |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 1 / ( 2 · i ) ) ∈ ℂ ) |
17 |
5 7 10 12 16
|
dvmptcmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / ( 2 · i ) ) · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / ( 2 · i ) ) · ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ) ) ) |
18 |
|
imval2 |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
19 |
1 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℑ ‘ 𝐴 ) = ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
20 |
|
divrec2 |
⊢ ( ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) = ( ( 1 / ( 2 · i ) ) · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) |
21 |
13 14 20
|
mp3an23 |
⊢ ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ∈ ℂ → ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) = ( ( 1 / ( 2 · i ) ) · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) |
22 |
7 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 − ( ∗ ‘ 𝐴 ) ) / ( 2 · i ) ) = ( ( 1 / ( 2 · i ) ) · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) |
23 |
19 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℑ ‘ 𝐴 ) = ( ( 1 / ( 2 · i ) ) · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) |
24 |
23
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ℑ ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / ( 2 · i ) ) · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ℑ ‘ 𝐴 ) ) ) = ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / ( 2 · i ) ) · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
26 |
|
imval2 |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) = ( ( 𝐵 − ( ∗ ‘ 𝐵 ) ) / ( 2 · i ) ) ) |
27 |
8 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℑ ‘ 𝐵 ) = ( ( 𝐵 − ( ∗ ‘ 𝐵 ) ) / ( 2 · i ) ) ) |
28 |
|
divrec2 |
⊢ ( ( ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( 𝐵 − ( ∗ ‘ 𝐵 ) ) / ( 2 · i ) ) = ( ( 1 / ( 2 · i ) ) · ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ) ) |
29 |
13 14 28
|
mp3an23 |
⊢ ( ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ∈ ℂ → ( ( 𝐵 − ( ∗ ‘ 𝐵 ) ) / ( 2 · i ) ) = ( ( 1 / ( 2 · i ) ) · ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ) ) |
30 |
10 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 − ( ∗ ‘ 𝐵 ) ) / ( 2 · i ) ) = ( ( 1 / ( 2 · i ) ) · ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ) ) |
31 |
27 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℑ ‘ 𝐵 ) = ( ( 1 / ( 2 · i ) ) · ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ) ) |
32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ℑ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / ( 2 · i ) ) · ( 𝐵 − ( ∗ ‘ 𝐵 ) ) ) ) ) |
33 |
17 25 32
|
3eqtr4d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ℑ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℑ ‘ 𝐵 ) ) ) |