Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptmulf.ph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
dvmptmulf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
3 |
|
dvmptmulf.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
4 |
|
dvmptmulf.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
5 |
|
dvmptmulf.ab |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
6 |
|
dvmptmulf.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
7 |
|
dvmptmulf.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) |
8 |
|
dvmptmulf.cd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐴 · 𝐶 ) |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 · |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
13 |
10 11 12
|
nfov |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
14 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
15 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
17 |
9 13 16
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
18 |
17
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) ) |
20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝑋 |
21 |
1 20
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) |
22 |
10
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ |
23 |
21 22
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
24 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑋 ↔ 𝑦 ∈ 𝑋 ) ) |
25 |
24
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ) ) |
26 |
14
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
27 |
25 26
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) ) |
28 |
23 27 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
29 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
30 |
29
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑉 |
32 |
30 31
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 |
33 |
21 32
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
34 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
35 |
34
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑉 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) |
36 |
25 35
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) ) |
37 |
33 36 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
39 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
40 |
|
csbcow |
⊢ ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑥 / 𝑥 ⦌ 𝐴 |
41 |
|
csbid |
⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐴 = 𝐴 |
42 |
40 41
|
eqtri |
⊢ ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 |
43 |
42
|
a1i |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
44 |
39 43
|
eqtrd |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
45 |
10 38 44
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
46 |
45
|
oveq2i |
⊢ ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
47 |
46
|
a1i |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
49 |
48 30 34
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
50 |
49
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
51 |
47 5 50
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
52 |
12
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ |
53 |
21 52
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
54 |
15
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) |
55 |
25 54
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) ) |
56 |
53 55 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
57 |
29
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐷 |
58 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑊 |
59 |
57 58
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 |
60 |
21 59
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) |
61 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) |
62 |
61
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐷 ∈ 𝑊 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) ) |
63 |
25 62
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) ) ) |
64 |
60 63 7
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) |
65 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
66 |
|
eqcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
67 |
66
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ( 𝑦 = 𝑥 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
68 |
|
eqcom |
⊢ ( 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
69 |
68
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) ) |
70 |
67 69
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) ) |
71 |
15 70
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
72 |
12 65 71
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) |
73 |
72
|
oveq2i |
⊢ ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
74 |
73
|
a1i |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) |
75 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
76 |
75 57 61
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) |
77 |
76
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ) |
78 |
74 8 77
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ) |
79 |
2 28 37 51 56 64 78
|
dvmptmul |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) ) ) |
80 |
30 11 12
|
nfov |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
81 |
|
nfcv |
⊢ Ⅎ 𝑥 + |
82 |
57 11 10
|
nfov |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
83 |
80 81 82
|
nfov |
⊢ Ⅎ 𝑥 ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
84 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) |
85 |
66
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
86 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
87 |
86
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
88 |
85 87
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
89 |
34 88
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
90 |
89 71
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
91 |
66
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ↔ ( 𝑦 = 𝑥 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ) |
92 |
|
eqcom |
⊢ ( 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
93 |
92
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) ) |
94 |
91 93
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) ) |
95 |
61 94
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
96 |
95 44
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) = ( 𝐷 · 𝐴 ) ) |
97 |
90 96
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) |
98 |
83 84 97
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑋 ↦ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) |
99 |
98
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) ) |
100 |
19 79 99
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) ) |