| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptmulf.ph | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | dvmptmulf.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 3 |  | dvmptmulf.a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | dvmptmulf.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  𝑉 ) | 
						
							| 5 |  | dvmptmulf.ab | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 6 |  | dvmptmulf.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ ) | 
						
							| 7 |  | dvmptmulf.d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐷  ∈  𝑊 ) | 
						
							| 8 |  | dvmptmulf.cd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐶 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐷 ) ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝐴  ·  𝐶 ) | 
						
							| 10 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥  · | 
						
							| 12 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶 | 
						
							| 13 | 10 11 12 | nfov | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 14 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 15 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 16 | 14 15 | oveq12d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ·  𝐶 )  =  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 17 | 9 13 16 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  𝐶 ) )  =  ( 𝑦  ∈  𝑋  ↦  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 18 | 17 | oveq2i | ⊢ ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  𝐶 ) ) )  =  ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  𝐶 ) ) )  =  ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) ) ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝑋 | 
						
							| 21 | 1 20 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  𝑋 ) | 
						
							| 22 | 10 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℂ | 
						
							| 23 | 21 22 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 24 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑋  ↔  𝑦  ∈  𝑋 ) ) | 
						
							| 25 | 24 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝑦  ∈  𝑋 ) ) ) | 
						
							| 26 | 14 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  ℂ  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 27 | 25 26 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℂ ) ) ) | 
						
							| 28 | 23 27 3 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 30 | 29 | nfcsb1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑥 𝑉 | 
						
							| 32 | 30 31 | nfel | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑉 | 
						
							| 33 | 21 32 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) | 
						
							| 34 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  ∈  𝑉  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) ) | 
						
							| 36 | 25 35 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  𝑉 )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) ) ) | 
						
							| 37 | 33 36 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 39 |  | csbeq1a | ⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑥  /  𝑦 ⦌ ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 40 |  | csbcow | ⊢ ⦋ 𝑥  /  𝑦 ⦌ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑥  /  𝑥 ⦌ 𝐴 | 
						
							| 41 |  | csbid | ⊢ ⦋ 𝑥  /  𝑥 ⦌ 𝐴  =  𝐴 | 
						
							| 42 | 40 41 | eqtri | ⊢ ⦋ 𝑥  /  𝑦 ⦌ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐴 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑥  /  𝑦 ⦌ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐴 ) | 
						
							| 44 | 39 43 | eqtrd | ⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐴 ) | 
						
							| 45 | 10 38 44 | cbvmpt | ⊢ ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) | 
						
							| 46 | 45 | oveq2i | ⊢ ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ) | 
						
							| 48 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 49 | 48 30 34 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 50 | 49 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 51 | 47 5 50 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 52 | 12 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∈  ℂ | 
						
							| 53 | 21 52 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 54 | 15 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐶  ∈  ℂ  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∈  ℂ ) ) | 
						
							| 55 | 25 54 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∈  ℂ ) ) ) | 
						
							| 56 | 53 55 6 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 57 | 29 | nfcsb1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐷 | 
						
							| 58 |  | nfcv | ⊢ Ⅎ 𝑥 𝑊 | 
						
							| 59 | 57 58 | nfel | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ∈  𝑊 | 
						
							| 60 | 21 59 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ∈  𝑊 ) | 
						
							| 61 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐷  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 ) | 
						
							| 62 | 61 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐷  ∈  𝑊  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ∈  𝑊 ) ) | 
						
							| 63 | 25 62 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐷  ∈  𝑊 )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ∈  𝑊 ) ) ) | 
						
							| 64 | 60 63 7 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ∈  𝑊 ) | 
						
							| 65 |  | nfcv | ⊢ Ⅎ 𝑦 𝐶 | 
						
							| 66 |  | eqcom | ⊢ ( 𝑥  =  𝑦  ↔  𝑦  =  𝑥 ) | 
						
							| 67 | 66 | imbi1i | ⊢ ( ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  ↔  ( 𝑦  =  𝑥  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 68 |  | eqcom | ⊢ ( 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  𝐶 ) | 
						
							| 69 | 68 | imbi2i | ⊢ ( ( 𝑦  =  𝑥  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  ↔  ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  𝐶 ) ) | 
						
							| 70 | 67 69 | bitri | ⊢ ( ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  ↔  ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  𝐶 ) ) | 
						
							| 71 | 15 70 | mpbi | ⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  𝐶 ) | 
						
							| 72 | 12 65 71 | cbvmpt | ⊢ ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  =  ( 𝑥  ∈  𝑋  ↦  𝐶 ) | 
						
							| 73 | 72 | oveq2i | ⊢ ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) | 
						
							| 74 | 73 | a1i | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐶 ) ) ) | 
						
							| 75 |  | nfcv | ⊢ Ⅎ 𝑦 𝐷 | 
						
							| 76 | 75 57 61 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐷 )  =  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 ) | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐷 )  =  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 78 | 74 8 77 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  =  ( 𝑦  ∈  𝑋  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 79 | 2 28 37 51 56 64 78 | dvmptmul | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑋  ↦  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) )  =  ( 𝑦  ∈  𝑋  ↦  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  +  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) ) ) ) | 
						
							| 80 | 30 11 12 | nfov | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 81 |  | nfcv | ⊢ Ⅎ 𝑥  + | 
						
							| 82 | 57 11 10 | nfov | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 83 | 80 81 82 | nfov | ⊢ Ⅎ 𝑥 ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  +  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 84 |  | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) ) | 
						
							| 85 | 66 | imbi1i | ⊢ ( ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ↔  ( 𝑦  =  𝑥  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 86 |  | eqcom | ⊢ ( 𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  𝐵 ) | 
						
							| 87 | 86 | imbi2i | ⊢ ( ( 𝑦  =  𝑥  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ↔  ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  𝐵 ) ) | 
						
							| 88 | 85 87 | bitri | ⊢ ( ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ↔  ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  𝐵 ) ) | 
						
							| 89 | 34 88 | mpbi | ⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  𝐵 ) | 
						
							| 90 | 89 71 | oveq12d | ⊢ ( 𝑦  =  𝑥  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  =  ( 𝐵  ·  𝐶 ) ) | 
						
							| 91 | 66 | imbi1i | ⊢ ( ( 𝑥  =  𝑦  →  𝐷  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 )  ↔  ( 𝑦  =  𝑥  →  𝐷  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 92 |  | eqcom | ⊢ ( 𝐷  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  =  𝐷 ) | 
						
							| 93 | 92 | imbi2i | ⊢ ( ( 𝑦  =  𝑥  →  𝐷  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 )  ↔  ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  =  𝐷 ) ) | 
						
							| 94 | 91 93 | bitri | ⊢ ( ( 𝑥  =  𝑦  →  𝐷  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐷 )  ↔  ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  =  𝐷 ) ) | 
						
							| 95 | 61 94 | mpbi | ⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐷  =  𝐷 ) | 
						
							| 96 | 95 44 | oveq12d | ⊢ ( 𝑦  =  𝑥  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 )  =  ( 𝐷  ·  𝐴 ) ) | 
						
							| 97 | 90 96 | oveq12d | ⊢ ( 𝑦  =  𝑥  →  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  +  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) ) ) | 
						
							| 98 | 83 84 97 | cbvmpt | ⊢ ( 𝑦  ∈  𝑋  ↦  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  +  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) ) ) | 
						
							| 99 | 98 | a1i | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  ↦  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  +  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐷  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) ) ) ) | 
						
							| 100 | 19 79 99 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  𝐶 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) ) ) ) |