Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
5
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
7 |
1 2 3 4 6
|
dvmptcmul |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐵 ) ) ) |
8 |
2
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
9 |
8
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐴 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐴 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐴 ) ) ) |
11 |
1 2 3 4
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
12 |
11
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
13 |
12
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐵 ) ) |
14 |
7 10 13
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐵 ) ) |