Metamath Proof Explorer


Theorem dvmptneg

Description: Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
Assertion dvmptneg ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ - 𝐴 ) ) = ( 𝑥𝑋 ↦ - 𝐵 ) )

Proof

Step Hyp Ref Expression
1 dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
3 dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
4 dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
5 neg1cn - 1 ∈ ℂ
6 5 a1i ( 𝜑 → - 1 ∈ ℂ )
7 1 2 3 4 6 dvmptcmul ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( - 1 · 𝐴 ) ) ) = ( 𝑥𝑋 ↦ ( - 1 · 𝐵 ) ) )
8 2 mulm1d ( ( 𝜑𝑥𝑋 ) → ( - 1 · 𝐴 ) = - 𝐴 )
9 8 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( - 1 · 𝐴 ) ) = ( 𝑥𝑋 ↦ - 𝐴 ) )
10 9 oveq2d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( - 1 · 𝐴 ) ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ - 𝐴 ) ) )
11 1 2 3 4 dvmptcl ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ℂ )
12 11 mulm1d ( ( 𝜑𝑥𝑋 ) → ( - 1 · 𝐵 ) = - 𝐵 )
13 12 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( - 1 · 𝐵 ) ) = ( 𝑥𝑋 ↦ - 𝐵 ) )
14 7 10 13 3eqtr3d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ - 𝐴 ) ) = ( 𝑥𝑋 ↦ - 𝐵 ) )