Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptntr.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
dvmptntr.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
3 |
|
dvmptntr.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
4 |
|
dvmptntr.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
5 |
|
dvmptntr.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
6 |
|
dvmptntr.i |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 ) |
7 |
5
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
8 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
9 |
7 1 8
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
10 |
4 9
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
11 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
13 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐽 ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝐽 ) |
15 |
2 14
|
sseqtrd |
⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝐽 ) |
16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
17 |
16
|
ntridm |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
18 |
12 15 17
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
19 |
6
|
fveq2d |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) |
20 |
18 19
|
eqtr3d |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) |
21 |
20
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
22 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
23 |
5 4
|
dvres |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
24 |
1 22 2 2 23
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
25 |
16
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
26 |
12 15 25
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
27 |
6 26
|
eqsstrrd |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
28 |
27 2
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
29 |
5 4
|
dvres |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
30 |
1 22 2 28 29
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
31 |
21 24 30
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) ) |
32 |
|
ssid |
⊢ 𝑋 ⊆ 𝑋 |
33 |
|
resmpt |
⊢ ( 𝑋 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
34 |
32 33
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
36 |
31 35
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
37 |
27
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) ) |
39 |
36 38
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) ) |