| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptcj.a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | dvmptcj.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | dvmptcj.da | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 4 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 6 | 1 | cjcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 | 1 6 | addcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 8 | 5 1 2 3 | dvmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  ℂ ) | 
						
							| 9 | 8 | cjcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∗ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 10 | 8 9 | addcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 11 | 1 2 3 | dvmptcj | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( ∗ ‘ 𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ∗ ‘ 𝐵 ) ) ) | 
						
							| 12 | 5 1 2 3 6 9 11 | dvmptadd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐵  +  ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 13 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 15 | 5 7 10 12 14 | dvmptcmul | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( ( 1  /  2 )  ·  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 1  /  2 )  ·  ( 𝐵  +  ( ∗ ‘ 𝐵 ) ) ) ) ) | 
						
							| 16 |  | reval | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  =  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 17 | 1 16 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ℜ ‘ 𝐴 )  =  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 18 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 19 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 20 |  | divrec2 | ⊢ ( ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 )  =  ( ( 1  /  2 )  ·  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 21 | 18 19 20 | mp3an23 | ⊢ ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  ∈  ℂ  →  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 )  =  ( ( 1  /  2 )  ·  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 22 | 7 21 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐴  +  ( ∗ ‘ 𝐴 ) )  /  2 )  =  ( ( 1  /  2 )  ·  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 23 | 17 22 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ℜ ‘ 𝐴 )  =  ( ( 1  /  2 )  ·  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 24 | 23 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ℜ ‘ 𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 1  /  2 )  ·  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( ℜ ‘ 𝐴 ) ) )  =  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( ( 1  /  2 )  ·  ( 𝐴  +  ( ∗ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 26 |  | reval | ⊢ ( 𝐵  ∈  ℂ  →  ( ℜ ‘ 𝐵 )  =  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 ) ) | 
						
							| 27 | 8 26 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ℜ ‘ 𝐵 )  =  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 ) ) | 
						
							| 28 |  | divrec2 | ⊢ ( ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 )  =  ( ( 1  /  2 )  ·  ( 𝐵  +  ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 29 | 18 19 28 | mp3an23 | ⊢ ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  ∈  ℂ  →  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 )  =  ( ( 1  /  2 )  ·  ( 𝐵  +  ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 30 | 10 29 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 )  =  ( ( 1  /  2 )  ·  ( 𝐵  +  ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 31 | 27 30 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ℜ ‘ 𝐵 )  =  ( ( 1  /  2 )  ·  ( 𝐵  +  ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 32 | 31 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ℜ ‘ 𝐵 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 1  /  2 )  ·  ( 𝐵  +  ( ∗ ‘ 𝐵 ) ) ) ) ) | 
						
							| 33 | 15 25 32 | 3eqtr4d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  𝑋  ↦  ( ℜ ‘ 𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ℜ ‘ 𝐵 ) ) ) |