Metamath Proof Explorer


Theorem dvmptres

Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
dvmptres.y ( 𝜑𝑌𝑋 )
dvmptres.j 𝐽 = ( 𝐾t 𝑆 )
dvmptres.k 𝐾 = ( TopOpen ‘ ℂfld )
dvmptres.t ( 𝜑𝑌𝐽 )
Assertion dvmptres ( 𝜑 → ( 𝑆 D ( 𝑥𝑌𝐴 ) ) = ( 𝑥𝑌𝐵 ) )

Proof

Step Hyp Ref Expression
1 dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
3 dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
4 dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
5 dvmptres.y ( 𝜑𝑌𝑋 )
6 dvmptres.j 𝐽 = ( 𝐾t 𝑆 )
7 dvmptres.k 𝐾 = ( TopOpen ‘ ℂfld )
8 dvmptres.t ( 𝜑𝑌𝐽 )
9 7 cnfldtop 𝐾 ∈ Top
10 resttop ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝐾t 𝑆 ) ∈ Top )
11 9 1 10 sylancr ( 𝜑 → ( 𝐾t 𝑆 ) ∈ Top )
12 6 11 eqeltrid ( 𝜑𝐽 ∈ Top )
13 isopn3i ( ( 𝐽 ∈ Top ∧ 𝑌𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 )
14 12 8 13 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 )
15 1 2 3 4 5 6 7 14 dvmptres2 ( 𝜑 → ( 𝑆 D ( 𝑥𝑌𝐴 ) ) = ( 𝑥𝑌𝐵 ) )