Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
5 |
|
dvmptres.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
6 |
|
dvmptres.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
7 |
|
dvmptres.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
8 |
|
dvmptres.t |
⊢ ( 𝜑 → 𝑌 ∈ 𝐽 ) |
9 |
7
|
cnfldtop |
⊢ 𝐾 ∈ Top |
10 |
|
resttop |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
11 |
9 1 10
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
12 |
6 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
13 |
|
isopn3i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) |
14 |
12 8 13
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) |
15 |
1 2 3 4 5 6 7 14
|
dvmptres2 |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |