| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 5 |
|
dvmptres2.z |
⊢ ( 𝜑 → 𝑍 ⊆ 𝑋 ) |
| 6 |
|
dvmptres2.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
| 7 |
|
dvmptres2.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 8 |
|
dvmptres2.i |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) = 𝑌 ) |
| 9 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 11 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 12 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 13 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 14 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 16 |
12 15
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 17 |
|
dvbsss |
⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⊆ 𝑆 |
| 18 |
16 17
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 19 |
5 18
|
sstrd |
⊢ ( 𝜑 → 𝑍 ⊆ 𝑆 ) |
| 20 |
7 6
|
dvres |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑍 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) ) |
| 21 |
10 11 18 19 20
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) ) |
| 22 |
5
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) ) |
| 24 |
4
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) ) |
| 25 |
8
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) ) |
| 26 |
7
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 27 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 28 |
26 10 27
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 29 |
6 28
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
| 30 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 32 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐽 ) |
| 33 |
29 32
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝐽 ) |
| 34 |
19 33
|
sseqtrd |
⊢ ( 𝜑 → 𝑍 ⊆ ∪ 𝐽 ) |
| 35 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 36 |
35
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑍 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ⊆ 𝑍 ) |
| 37 |
31 34 36
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ⊆ 𝑍 ) |
| 38 |
8 37
|
eqsstrrd |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑍 ) |
| 39 |
38 5
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 40 |
39
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| 41 |
24 25 40
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| 42 |
21 23 41
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |