Metamath Proof Explorer


Theorem dvmptres2

Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
dvmptres2.z ( 𝜑𝑍𝑋 )
dvmptres2.j 𝐽 = ( 𝐾t 𝑆 )
dvmptres2.k 𝐾 = ( TopOpen ‘ ℂfld )
dvmptres2.i ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) = 𝑌 )
Assertion dvmptres2 ( 𝜑 → ( 𝑆 D ( 𝑥𝑍𝐴 ) ) = ( 𝑥𝑌𝐵 ) )

Proof

Step Hyp Ref Expression
1 dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
3 dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
4 dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
5 dvmptres2.z ( 𝜑𝑍𝑋 )
6 dvmptres2.j 𝐽 = ( 𝐾t 𝑆 )
7 dvmptres2.k 𝐾 = ( TopOpen ‘ ℂfld )
8 dvmptres2.i ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) = 𝑌 )
9 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
10 1 9 syl ( 𝜑𝑆 ⊆ ℂ )
11 2 fmpttd ( 𝜑 → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ )
12 4 dmeqd ( 𝜑 → dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = dom ( 𝑥𝑋𝐵 ) )
13 3 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 𝐵𝑉 )
14 dmmptg ( ∀ 𝑥𝑋 𝐵𝑉 → dom ( 𝑥𝑋𝐵 ) = 𝑋 )
15 13 14 syl ( 𝜑 → dom ( 𝑥𝑋𝐵 ) = 𝑋 )
16 12 15 eqtrd ( 𝜑 → dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = 𝑋 )
17 dvbsss dom ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ⊆ 𝑆
18 16 17 eqsstrrdi ( 𝜑𝑋𝑆 )
19 5 18 sstrd ( 𝜑𝑍𝑆 )
20 7 6 dvres ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋𝑆𝑍𝑆 ) ) → ( 𝑆 D ( ( 𝑥𝑋𝐴 ) ↾ 𝑍 ) ) = ( ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) )
21 10 11 18 19 20 syl22anc ( 𝜑 → ( 𝑆 D ( ( 𝑥𝑋𝐴 ) ↾ 𝑍 ) ) = ( ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) )
22 5 resmptd ( 𝜑 → ( ( 𝑥𝑋𝐴 ) ↾ 𝑍 ) = ( 𝑥𝑍𝐴 ) )
23 22 oveq2d ( 𝜑 → ( 𝑆 D ( ( 𝑥𝑋𝐴 ) ↾ 𝑍 ) ) = ( 𝑆 D ( 𝑥𝑍𝐴 ) ) )
24 4 reseq1d ( 𝜑 → ( ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( ( 𝑥𝑋𝐵 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) )
25 8 reseq2d ( 𝜑 → ( ( 𝑥𝑋𝐵 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( ( 𝑥𝑋𝐵 ) ↾ 𝑌 ) )
26 7 cnfldtopon 𝐾 ∈ ( TopOn ‘ ℂ )
27 resttopon ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
28 26 10 27 sylancr ( 𝜑 → ( 𝐾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
29 6 28 eqeltrid ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑆 ) )
30 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top )
31 29 30 syl ( 𝜑𝐽 ∈ Top )
32 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = 𝐽 )
33 29 32 syl ( 𝜑𝑆 = 𝐽 )
34 19 33 sseqtrd ( 𝜑𝑍 𝐽 )
35 eqid 𝐽 = 𝐽
36 35 ntrss2 ( ( 𝐽 ∈ Top ∧ 𝑍 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ⊆ 𝑍 )
37 31 34 36 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ⊆ 𝑍 )
38 8 37 eqsstrrd ( 𝜑𝑌𝑍 )
39 38 5 sstrd ( 𝜑𝑌𝑋 )
40 39 resmptd ( 𝜑 → ( ( 𝑥𝑋𝐵 ) ↾ 𝑌 ) = ( 𝑥𝑌𝐵 ) )
41 24 25 40 3eqtrd ( 𝜑 → ( ( 𝑆 D ( 𝑥𝑋𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( 𝑥𝑌𝐵 ) )
42 21 23 41 3eqtr3d ( 𝜑 → ( 𝑆 D ( 𝑥𝑍𝐴 ) ) = ( 𝑥𝑌𝐵 ) )