Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptres3.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
dvmptres3.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
3 |
|
dvmptres3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
4 |
|
dvmptres3.y |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑋 ) = 𝑌 ) |
5 |
|
dvmptres3.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
6 |
|
dvmptres3.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
7 |
|
dvmptres3.d |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
8 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
9 |
7
|
dmeqd |
⊢ ( 𝜑 → dom ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
11 |
10 6
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
12 |
9 11
|
eqtrd |
⊢ ( 𝜑 → dom ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
13 |
1
|
dvres3a |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ∈ 𝐽 ∧ dom ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) = ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) ) |
14 |
2 8 3 12 13
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) = ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) ) |
15 |
|
rescom |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ↾ 𝑋 ) |
16 |
|
resres |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ↾ 𝑋 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ ( 𝑆 ∩ 𝑋 ) ) |
17 |
15 16
|
eqtri |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ ( 𝑆 ∩ 𝑋 ) ) |
18 |
4
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ ( 𝑆 ∩ 𝑋 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) |
19 |
17 18
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) |
20 |
|
ffn |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) Fn 𝑋 ) |
21 |
|
fnresdm |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) Fn 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
22 |
8 20 21
|
3syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
23 |
22
|
reseq1d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) |
24 |
|
inss2 |
⊢ ( 𝑆 ∩ 𝑋 ) ⊆ 𝑋 |
25 |
4 24
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
26 |
25
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
27 |
19 23 26
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) ) |
29 |
|
rescom |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑆 ) ↾ 𝑋 ) |
30 |
|
resres |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑆 ) ↾ 𝑋 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( 𝑆 ∩ 𝑋 ) ) |
31 |
29 30
|
eqtri |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( 𝑆 ∩ 𝑋 ) ) |
32 |
4
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( 𝑆 ∩ 𝑋 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) ) |
33 |
31 32
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) ) |
34 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
35 |
10
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) Fn 𝑋 ) |
36 |
|
fnresdm |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) Fn 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
37 |
34 35 36
|
3syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
38 |
37 7
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
39 |
38
|
reseq1d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) ) |
40 |
25
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
41 |
33 39 40
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
42 |
14 28 41
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |