Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptresicc.f |
⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ 𝐴 ) |
2 |
|
dvmptresicc.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
3 |
|
dvmptresicc.fdv |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) |
4 |
|
dvmptresicc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
5 |
|
dvmptresicc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
dvmptresicc.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
7 |
1
|
reseq1i |
⊢ ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) = ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 𝐶 [,] 𝐷 ) ) |
8 |
5 6
|
iccssred |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
11 |
8 10
|
sstrd |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℂ ) |
12 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 𝐶 [,] 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) |
13 |
7 12
|
syl5eq |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) ) |
15 |
8
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) = ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) = ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ℝ D ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) ) |
18 |
2 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
19 |
18 10
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℂ ) |
20 |
|
ssidd |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
21 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
22 |
21
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
23 |
21 22
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
24 |
10 19 20 8 23
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( ( 𝐹 ↾ ℝ ) ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
25 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
26 |
25
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
27 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
28 |
3
|
dmeqd |
⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = dom ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) |
29 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℂ 𝐵 ∈ ℂ ) |
30 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ℂ 𝐵 ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ 𝐵 ) = ℂ ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ℂ ↦ 𝐵 ) = ℂ ) |
32 |
28 31
|
eqtr2d |
⊢ ( 𝜑 → ℂ = dom ( ℂ D 𝐹 ) ) |
33 |
10 32
|
sseqtrd |
⊢ ( 𝜑 → ℝ ⊆ dom ( ℂ D 𝐹 ) ) |
34 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ 𝐹 : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) |
35 |
26 18 27 33 34
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) |
36 |
|
iccntr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
37 |
5 6 36
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
38 |
35 37
|
reseq12d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ( ℂ D 𝐹 ) ↾ ℝ ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
39 |
|
ioossre |
⊢ ( 𝐶 (,) 𝐷 ) ⊆ ℝ |
40 |
|
resabs1 |
⊢ ( ( 𝐶 (,) 𝐷 ) ⊆ ℝ → ( ( ( ℂ D 𝐹 ) ↾ ℝ ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
41 |
39 40
|
mp1i |
⊢ ( 𝜑 → ( ( ( ℂ D 𝐹 ) ↾ ℝ ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
42 |
3
|
reseq1d |
⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( ( 𝑥 ∈ ℂ ↦ 𝐵 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
43 |
|
ioosscn |
⊢ ( 𝐶 (,) 𝐷 ) ⊆ ℂ |
44 |
|
resmpt |
⊢ ( ( 𝐶 (,) 𝐷 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐵 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
45 |
43 44
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ 𝐵 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
46 |
42 45
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
47 |
38 41 46
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℝ D ( 𝐹 ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
48 |
17 24 47
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |
49 |
14 48
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ↦ 𝐵 ) ) |