Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
5 |
|
dvmptsub.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
6 |
|
dvmptsub.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) |
7 |
|
dvmptsub.dc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
8 |
5
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - 𝐶 ∈ ℂ ) |
9 |
|
negex |
⊢ - 𝐷 ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - 𝐷 ∈ V ) |
11 |
1 5 6 7
|
dvmptneg |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐷 ) ) |
12 |
1 2 3 4 8 10 11
|
dvmptadd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + - 𝐷 ) ) ) |
13 |
2 5
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + - 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
14 |
13
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) ) |
16 |
1 2 3 4
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
17 |
1 5 6 7
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) |
18 |
16 17
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 + - 𝐷 ) = ( 𝐵 − 𝐷 ) ) |
19 |
18
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + - 𝐷 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − 𝐷 ) ) ) |
20 |
12 15 19
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − 𝐷 ) ) ) |