Step |
Hyp |
Ref |
Expression |
1 |
|
dvmulcncf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvmulcncf.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
3 |
|
dvmulcncf.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
4 |
|
dvmulcncf.fdv |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
5 |
|
dvmulcncf.gdv |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
6 |
|
cncff |
⊢ ( ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
7 |
|
fdm |
⊢ ( ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
8 |
4 6 7
|
3syl |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
9 |
|
cncff |
⊢ ( ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
10 |
|
fdm |
⊢ ( ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
11 |
5 9 10
|
3syl |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
12 |
1 2 3 8 11
|
dvmulf |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ) |
13 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
14 |
|
sseq1 |
⊢ ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) ) |
15 |
13 14
|
mpbiri |
⊢ ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) |
16 |
|
eqimss |
⊢ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) |
17 |
15 16
|
pm3.2i |
⊢ ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) |
18 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
20 |
|
pm3.44 |
⊢ ( ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) → ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ ) ) |
21 |
17 19 20
|
mpsyl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
22 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
23 |
8 22
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
24 |
|
dvcn |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐺 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐺 ) = 𝑋 ) → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) |
25 |
21 3 23 11 24
|
syl31anc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) |
26 |
4 25
|
mulcncff |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
27 |
|
dvcn |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝑋 ) → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) |
28 |
21 2 23 8 27
|
syl31anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) |
29 |
5 28
|
mulcncff |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
30 |
26 29
|
addcncff |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
31 |
12 30
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |