| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvaddf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvaddf.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 3 |
|
dvaddf.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
| 4 |
|
dvaddf.df |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 5 |
|
dvaddf.dg |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 7 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
| 8 |
4 7
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ⊆ 𝑆 ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 12 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ) |
| 14 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ) |
| 16 |
6 9 10 9 11 13 15
|
dvmul |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) = ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 17 |
16
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 18 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ) |
| 19 |
1 18
|
syl |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ) |
| 20 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 22 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 24 |
1 8
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 25 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
| 26 |
23 2 3 24 24 25
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 27 |
21 26 8
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⊆ 𝑋 ) |
| 28 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ⊆ ℂ ) |
| 29 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 30 |
1 29
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 32 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
| 33 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 34 |
31 32 33
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 35 |
13 34
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
| 36 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 37 |
1 36
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 39 |
|
ffun |
⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) |
| 40 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 41 |
38 39 40
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 42 |
15 41
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
| 43 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 44 |
6 9 10 9 28 35 42 43
|
dvmulbr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 45 |
|
reldv |
⊢ Rel ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) |
| 46 |
45
|
releldmi |
⊢ ( 𝑥 ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ) |
| 47 |
44 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ) |
| 48 |
27 47
|
eqelssd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = 𝑋 ) |
| 49 |
48
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : 𝑋 ⟶ ℂ ) ) |
| 50 |
19 49
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : 𝑋 ⟶ ℂ ) |
| 51 |
50
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) ) ) |
| 52 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
| 53 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ V ) |
| 54 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ V ) |
| 55 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) |
| 56 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 57 |
30 56
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 58 |
57
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 59 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 60 |
24 54 55 58 59
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 61 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ∈ V ) |
| 62 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
| 63 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
| 64 |
37 63
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 65 |
64
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 66 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 67 |
24 61 62 65 66
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 68 |
24 52 53 60 67
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 69 |
17 51 68
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ) |