Step |
Hyp |
Ref |
Expression |
1 |
|
dvaddf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvaddf.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
3 |
|
dvaddf.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
4 |
|
dvaddf.df |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
5 |
|
dvaddf.dg |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
7 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
8 |
4 7
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ⊆ 𝑆 ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ { ℝ , ℂ } ) |
12 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ∈ 𝑋 ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ) |
14 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ∈ 𝑋 ) ) |
15 |
14
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ) |
16 |
6 9 10 9 11 13 15
|
dvmul |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) = ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
17 |
16
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
18 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ) |
20 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
22 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
24 |
1 8
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
25 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
26 |
23 2 3 24 24 25
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) : 𝑋 ⟶ ℂ ) |
27 |
21 26 8
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⊆ 𝑋 ) |
28 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ⊆ ℂ ) |
29 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ V ) |
30 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ∈ V ) |
31 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
32 |
1 31
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
34 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
35 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
36 |
33 34 35
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
37 |
13 36
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
38 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
39 |
1 38
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
41 |
|
ffun |
⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) |
42 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
43 |
40 41 42
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
44 |
15 43
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
45 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
46 |
6 9 10 9 28 29 30 37 44 45
|
dvmulbr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
47 |
|
reldv |
⊢ Rel ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) |
48 |
47
|
releldmi |
⊢ ( 𝑥 ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ) |
49 |
46 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ) |
50 |
27 49
|
eqelssd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = 𝑋 ) |
51 |
50
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : 𝑋 ⟶ ℂ ) ) |
52 |
19 51
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) : 𝑋 ⟶ ℂ ) |
53 |
52
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑥 ) ) ) |
54 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
55 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ V ) |
56 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) |
57 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
58 |
32 57
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
59 |
58
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
60 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
61 |
24 29 56 59 60
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
62 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
63 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
64 |
39 63
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
65 |
64
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
66 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
67 |
24 30 62 65 66
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
68 |
24 54 55 61 67
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
69 |
17 53 68
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ) |