Metamath Proof Explorer


Theorem dvn2bss

Description: An N-times differentiable point is an M-times differentiable point, if M <_ N . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Assertion dvn2bss ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } )
2 simp2 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) )
3 elfznn0 ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℕ0 )
4 3 3ad2ant3 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℕ0 )
5 elfzuz3 ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑀 ) )
6 5 3ad2ant3 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ𝑀 ) )
7 uznn0sub ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁𝑀 ) ∈ ℕ0 )
8 6 7 syl ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁𝑀 ) ∈ ℕ0 )
9 dvnadd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑀 ∈ ℕ0 ∧ ( 𝑁𝑀 ) ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁𝑀 ) ) ) )
10 1 2 4 8 9 syl22anc ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁𝑀 ) ) ) )
11 4 nn0cnd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℂ )
12 elfzuz2 ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ ‘ 0 ) )
13 12 3ad2ant3 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ ‘ 0 ) )
14 nn0uz 0 = ( ℤ ‘ 0 )
15 13 14 eleqtrrdi ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 )
16 15 nn0cnd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℂ )
17 11 16 pncan3d ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑀 + ( 𝑁𝑀 ) ) = 𝑁 )
18 17 fveq2d ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁𝑀 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
19 10 18 eqtrd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
20 19 dmeqd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁𝑀 ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
21 cnex ℂ ∈ V
22 21 a1i ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ℂ ∈ V )
23 dvnf ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ )
24 3 23 syl3an3 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ )
25 dvnbss ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 )
26 3 25 syl3an3 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 )
27 elpmi ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹𝑆 ) )
28 27 3ad2ant2 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹𝑆 ) )
29 28 simprd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom 𝐹𝑆 )
30 26 29 sstrd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝑆 )
31 elpm2r ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) )
32 22 1 24 30 31 syl22anc ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) )
33 dvnbss ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑁𝑀 ) ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁𝑀 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) )
34 1 32 8 33 syl3anc ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁𝑀 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) )
35 20 34 eqsstrrd ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) )