Step |
Hyp |
Ref |
Expression |
1 |
|
dvnff |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) |
2 |
1
|
ffvelrnda |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
3 |
2
|
3impa |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
4 |
|
cnex |
⊢ ℂ ∈ V |
5 |
|
simp2 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
6 |
5
|
dmexd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → dom 𝐹 ∈ V ) |
7 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ dom 𝐹 ∈ V ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) ) ) |
8 |
4 6 7
|
sylancr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) ) ) |
9 |
3 8
|
mpbid |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) ) |
10 |
9
|
simprd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) |