Step |
Hyp |
Ref |
Expression |
1 |
|
dvne0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvne0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvne0.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvne0.d |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
5 |
|
dvne0.z |
⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) |
6 |
1 2 3 4 5
|
dvne0 |
⊢ ( 𝜑 → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
7 |
|
isof1o |
⊢ ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 ) |
8 |
|
isof1o |
⊢ ( 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 ) |
9 |
7 8
|
jaoi |
⊢ ( ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 ) |
10 |
|
f1of1 |
⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 ) |
11 |
6 9 10
|
3syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 ) |
12 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
13 |
|
frn |
⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → ran 𝐹 ⊆ ℝ ) |
14 |
3 12 13
|
3syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
15 |
|
f1ss |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 ∧ ran 𝐹 ⊆ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ ) |
16 |
11 14 15
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ ) |