Step |
Hyp |
Ref |
Expression |
1 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
2 |
|
0zd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → 0 ∈ ℤ ) |
3 |
|
fvconst2g |
⊢ ( ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 𝐹 } ) ‘ 𝑘 ) = 𝐹 ) |
4 |
3
|
adantll |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 𝐹 } ) ‘ 𝑘 ) = 𝐹 ) |
5 |
|
dmexg |
⊢ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) → dom 𝐹 ∈ V ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → dom 𝐹 ∈ V ) |
7 |
|
cnex |
⊢ ℂ ∈ V |
8 |
7
|
a1i |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → ℂ ∈ V ) |
9 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
10 |
7 9
|
mpan |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
12 |
11
|
simpld |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
14 |
|
fpmg |
⊢ ( ( dom 𝐹 ∈ V ∧ ℂ ∈ V ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → 𝐹 ∈ ( ℂ ↑pm dom 𝐹 ) ) |
15 |
6 8 13 14
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 ∈ ( ℂ ↑pm dom 𝐹 ) ) |
16 |
4 15
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 𝐹 } ) ‘ 𝑘 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
17 |
|
vex |
⊢ 𝑘 ∈ V |
18 |
|
vex |
⊢ 𝑛 ∈ V |
19 |
17 18
|
opco1i |
⊢ ( 𝑘 ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) 𝑛 ) = ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ 𝑘 ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑆 D 𝑥 ) = ( 𝑆 D 𝑘 ) ) |
21 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) |
22 |
|
ovex |
⊢ ( 𝑆 D 𝑘 ) ∈ V |
23 |
20 21 22
|
fvmpt |
⊢ ( 𝑘 ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ 𝑘 ) = ( 𝑆 D 𝑘 ) ) |
24 |
23
|
elv |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ 𝑘 ) = ( 𝑆 D 𝑘 ) |
25 |
19 24
|
eqtri |
⊢ ( 𝑘 ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) 𝑛 ) = ( 𝑆 D 𝑘 ) |
26 |
7
|
a1i |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ℂ ∈ V ) |
27 |
5
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝐹 ∈ V ) |
28 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝑘 ) : dom ( 𝑆 D 𝑘 ) ⟶ ℂ ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑆 D 𝑘 ) : dom ( 𝑆 D 𝑘 ) ⟶ ℂ ) |
30 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → 𝑆 ⊆ ℂ ) |
32 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ) |
33 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ dom 𝐹 ∈ V ) → ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( 𝑘 : dom 𝑘 ⟶ ℂ ∧ dom 𝑘 ⊆ dom 𝐹 ) ) ) |
34 |
7 27 33
|
sylancr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( 𝑘 : dom 𝑘 ⟶ ℂ ∧ dom 𝑘 ⊆ dom 𝐹 ) ) ) |
35 |
32 34
|
mpbid |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑘 : dom 𝑘 ⟶ ℂ ∧ dom 𝑘 ⊆ dom 𝐹 ) ) |
36 |
35
|
simpld |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → 𝑘 : dom 𝑘 ⟶ ℂ ) |
37 |
35
|
simprd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝑘 ⊆ dom 𝐹 ) |
38 |
11
|
simprd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → dom 𝐹 ⊆ 𝑆 ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝐹 ⊆ 𝑆 ) |
40 |
37 39
|
sstrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom 𝑘 ⊆ 𝑆 ) |
41 |
31 36 40
|
dvbss |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom ( 𝑆 D 𝑘 ) ⊆ dom 𝑘 ) |
42 |
41 37
|
sstrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → dom ( 𝑆 D 𝑘 ) ⊆ dom 𝐹 ) |
43 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ dom 𝐹 ∈ V ) ∧ ( ( 𝑆 D 𝑘 ) : dom ( 𝑆 D 𝑘 ) ⟶ ℂ ∧ dom ( 𝑆 D 𝑘 ) ⊆ dom 𝐹 ) ) → ( 𝑆 D 𝑘 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
44 |
26 27 29 42 43
|
syl22anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑆 D 𝑘 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
45 |
25 44
|
eqeltrid |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑘 ∈ ( ℂ ↑pm dom 𝐹 ) ∧ 𝑛 ∈ ( ℂ ↑pm dom 𝐹 ) ) ) → ( 𝑘 ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) 𝑛 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
46 |
1 2 16 45
|
seqf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) |
47 |
21
|
dvnfval |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) = seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ) |
48 |
30 47
|
sylan |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) = seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ) |
49 |
48
|
feq1d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ↔ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) ) |
50 |
46 49
|
mpbird |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) |