Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) |
2 |
1
|
dmeqd |
⊢ ( 𝑥 = 0 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) |
3 |
1 2
|
feq12d |
⊢ ( 𝑥 = 0 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
6 |
5
|
dmeqd |
⊢ ( 𝑥 = 𝑛 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
7 |
5 6
|
feq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
10 |
9
|
dmeqd |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
11 |
9 10
|
feq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
14 |
13
|
dmeqd |
⊢ ( 𝑥 = 𝑁 → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
15 |
13 14
|
feq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑥 ) ⟶ ℝ ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) ) |
17 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
18 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
19 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
20 |
18 19
|
mpan2 |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ ) |
21 |
|
cnex |
⊢ ℂ ∈ V |
22 |
|
reex |
⊢ ℝ ∈ V |
23 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
24 |
21 22 23
|
mpanl12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
25 |
20 24
|
sylan |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
26 |
|
dvn0 |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
27 |
18 25 26
|
sylancr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
28 |
27
|
dmeqd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 ) |
29 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) |
30 |
29
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom 𝐹 = 𝐴 ) |
31 |
28 30
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐴 ) |
32 |
27 31
|
feq12d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ↔ 𝐹 : 𝐴 ⟶ ℝ ) ) |
33 |
17 32
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ⟶ ℝ ) |
34 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) |
35 |
22
|
prid1 |
⊢ ℝ ∈ { ℝ , ℂ } |
36 |
|
simprl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → 𝑛 ∈ ℕ0 ) |
37 |
|
dvnbss |
⊢ ( ( ℝ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑛 ∈ ℕ0 ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
38 |
35 25 36 37
|
mp3an2ani |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
39 |
30
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom 𝐹 = 𝐴 ) |
40 |
38 39
|
sseqtrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ 𝐴 ) |
41 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → 𝐴 ⊆ ℝ ) |
42 |
40 41
|
sstrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℝ ) |
43 |
|
dvfre |
⊢ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ∧ dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℝ ) → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) |
44 |
34 42 43
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) |
45 |
|
dvnp1 |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
46 |
18 25 36 45
|
mp3an2ani |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
47 |
46
|
dmeqd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
48 |
46 47
|
feq12d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ↔ ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) : dom ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⟶ ℝ ) ) |
49 |
44 48
|
mpbird |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) |
50 |
49
|
expr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) |
51 |
50
|
expcom |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) ) |
52 |
51
|
a2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℝ ) → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ⟶ ℝ ) ) ) |
53 |
4 8 12 16 33 52
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) |
54 |
53
|
com12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑁 ∈ ℕ0 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) ) |
55 |
54
|
3impia |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( ℝ D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℝ ) |