Step |
Hyp |
Ref |
Expression |
1 |
|
dvnmptconst.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvnmptconst.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
dvnmptconst.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
|
dvnmptconst.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
6 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 1 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑛 = 1 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 1 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 1 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑁 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) ) |
18 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
21 |
|
restsspw |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ⊆ 𝒫 𝑆 |
22 |
21 2
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑆 ) |
23 |
|
elpwi |
⊢ ( 𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆 ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
25 |
|
cnex |
⊢ ℂ ∈ V |
26 |
25
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
27 |
20 24 26 1
|
mptelpm |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
28 |
|
dvn1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 1 ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
29 |
19 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 1 ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
30 |
1 2 3
|
dvmptconst |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
31 |
29 30
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 1 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
32 |
|
simp3 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ∧ 𝜑 ) → 𝜑 ) |
33 |
|
simp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ∧ 𝜑 ) → 𝑚 ∈ ℕ ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ∧ 𝜑 ) → 𝜑 ) |
35 |
|
simpl |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
36 |
|
pm3.35 |
⊢ ( ( 𝜑 ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
37 |
34 35 36
|
syl2anc |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
38 |
37
|
3adant1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
39 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → 𝑆 ⊆ ℂ ) |
40 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
41 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → 𝑚 ∈ ℕ0 ) |
43 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) ) ) |
44 |
39 40 42 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) ) ) |
45 |
|
oveq2 |
⊢ ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
46 |
45
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
47 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
48 |
1 2 47
|
dvmptconst |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 0 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
50 |
44 46 49
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
51 |
32 33 38 50
|
syl3anc |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
52 |
51
|
3exp |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) ) |
53 |
8 11 14 17 31 52
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) ) |
54 |
4 5 53
|
sylc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |