| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnmptconst.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvnmptconst.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | dvnmptconst.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | dvnmptconst.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 1 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑛  =  1  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 1 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑛  =  1  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 1 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑁 ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 17 | 16 | imbi2d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) ) | 
						
							| 18 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 19 | 1 18 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 21 |  | restsspw | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ⊆  𝒫  𝑆 | 
						
							| 22 | 21 2 | sselid | ⊢ ( 𝜑  →  𝑋  ∈  𝒫  𝑆 ) | 
						
							| 23 |  | elpwi | ⊢ ( 𝑋  ∈  𝒫  𝑆  →  𝑋  ⊆  𝑆 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 25 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 27 | 20 24 26 1 | mptelpm | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 28 |  | dvn1 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 1 )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ) | 
						
							| 29 | 19 27 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 1 )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ) | 
						
							| 30 | 1 2 3 | dvmptconst | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 31 | 29 30 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 1 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 32 |  | simp3 | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 33 |  | simp1 | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ∧  𝜑 )  →  𝑚  ∈  ℕ ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 35 |  | simpl | ⊢ ( ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ∧  𝜑 )  →  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 36 |  | pm3.35 | ⊢ ( ( 𝜑  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 37 | 34 35 36 | syl2anc | ⊢ ( ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ∧  𝜑 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 38 | 37 | 3adant1 | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ∧  𝜑 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 39 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  𝑆  ⊆  ℂ ) | 
						
							| 40 | 27 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 41 |  | nnnn0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℕ0 ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 43 |  | dvnp1 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 ) ) ) | 
						
							| 44 | 39 40 42 43 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 ) ) ) | 
						
							| 45 |  | oveq2 | ⊢ ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 )  →  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 46 | 45 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 47 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 48 | 1 2 47 | dvmptconst | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  0 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 49 | 48 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  0 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 50 | 44 46 49 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 51 | 32 33 38 50 | syl3anc | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  ∧  𝜑 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 52 | 51 | 3exp | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) )  →  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑚  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) ) | 
						
							| 53 | 8 11 14 17 31 52 | nnind | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) ) | 
						
							| 54 | 4 5 53 | sylc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) |