Metamath Proof Explorer


Theorem dvnmptconst

Description: The N -th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnmptconst.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvnmptconst.x ( 𝜑𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
dvnmptconst.a ( 𝜑𝐴 ∈ ℂ )
dvnmptconst.n ( 𝜑𝑁 ∈ ℕ )
Assertion dvnmptconst ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑁 ) = ( 𝑥𝑋 ↦ 0 ) )

Proof

Step Hyp Ref Expression
1 dvnmptconst.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvnmptconst.x ( 𝜑𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
3 dvnmptconst.a ( 𝜑𝐴 ∈ ℂ )
4 dvnmptconst.n ( 𝜑𝑁 ∈ ℕ )
5 id ( 𝜑𝜑 )
6 fveq2 ( 𝑛 = 1 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 1 ) )
7 6 eqeq1d ( 𝑛 = 1 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 1 ) = ( 𝑥𝑋 ↦ 0 ) ) )
8 7 imbi2d ( 𝑛 = 1 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 1 ) = ( 𝑥𝑋 ↦ 0 ) ) ) )
9 fveq2 ( 𝑛 = 𝑚 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) )
10 9 eqeq1d ( 𝑛 = 𝑚 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) )
11 10 imbi2d ( 𝑛 = 𝑚 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ) )
12 fveq2 ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) )
13 12 eqeq1d ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥𝑋 ↦ 0 ) ) )
14 13 imbi2d ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥𝑋 ↦ 0 ) ) ) )
15 fveq2 ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑁 ) )
16 15 eqeq1d ( 𝑛 = 𝑁 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑁 ) = ( 𝑥𝑋 ↦ 0 ) ) )
17 16 imbi2d ( 𝑛 = 𝑁 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ 0 ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑁 ) = ( 𝑥𝑋 ↦ 0 ) ) ) )
18 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
19 1 18 syl ( 𝜑𝑆 ⊆ ℂ )
20 3 adantr ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
21 restsspw ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ⊆ 𝒫 𝑆
22 21 2 sseldi ( 𝜑𝑋 ∈ 𝒫 𝑆 )
23 elpwi ( 𝑋 ∈ 𝒫 𝑆𝑋𝑆 )
24 22 23 syl ( 𝜑𝑋𝑆 )
25 cnex ℂ ∈ V
26 25 a1i ( 𝜑 → ℂ ∈ V )
27 20 24 26 1 mptelpm ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) )
28 dvn1 ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 1 ) = ( 𝑆 D ( 𝑥𝑋𝐴 ) ) )
29 19 27 28 syl2anc ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 1 ) = ( 𝑆 D ( 𝑥𝑋𝐴 ) ) )
30 1 2 3 dvmptconst ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋 ↦ 0 ) )
31 29 30 eqtrd ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 1 ) = ( 𝑥𝑋 ↦ 0 ) )
32 simp3 ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ∧ 𝜑 ) → 𝜑 )
33 simp1 ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ∧ 𝜑 ) → 𝑚 ∈ ℕ )
34 simpr ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ∧ 𝜑 ) → 𝜑 )
35 simpl ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) )
36 pm3.35 ( ( 𝜑 ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) )
37 34 35 36 syl2anc ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) )
38 37 3adant1 ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) )
39 19 3ad2ant1 ( ( 𝜑𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → 𝑆 ⊆ ℂ )
40 27 3ad2ant1 ( ( 𝜑𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) )
41 nnnn0 ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 )
42 41 3ad2ant2 ( ( 𝜑𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → 𝑚 ∈ ℕ0 )
43 dvnp1 ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) ) )
44 39 40 42 43 syl3anc ( ( 𝜑𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) ) )
45 oveq2 ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ 0 ) ) )
46 45 3ad2ant3 ( ( 𝜑𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ 0 ) ) )
47 0cnd ( 𝜑 → 0 ∈ ℂ )
48 1 2 47 dvmptconst ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ 0 ) ) = ( 𝑥𝑋 ↦ 0 ) )
49 48 3ad2ant1 ( ( 𝜑𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ 0 ) ) = ( 𝑥𝑋 ↦ 0 ) )
50 44 46 49 3eqtrd ( ( 𝜑𝑚 ∈ ℕ ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥𝑋 ↦ 0 ) )
51 32 33 38 50 syl3anc ( ( 𝑚 ∈ ℕ ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥𝑋 ↦ 0 ) )
52 51 3exp ( 𝑚 ∈ ℕ → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑚 ) = ( 𝑥𝑋 ↦ 0 ) ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥𝑋 ↦ 0 ) ) ) )
53 8 11 14 17 31 52 nnind ( 𝑁 ∈ ℕ → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑁 ) = ( 𝑥𝑋 ↦ 0 ) ) )
54 4 5 53 sylc ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑁 ) = ( 𝑥𝑋 ↦ 0 ) )