Metamath Proof Explorer


Theorem dvnmptdivc

Description: Function-builder for iterated derivative, division rule for constant divisor. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnmptdivc.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvnmptdivc.x ( 𝜑𝑋𝑆 )
dvnmptdivc.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvnmptdivc.b ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ )
dvnmptdivc.dvn ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) )
dvnmptdivc.c ( 𝜑𝐶 ∈ ℂ )
dvnmptdivc.cne0 ( 𝜑𝐶 ≠ 0 )
dvnmptdivc.8 ( 𝜑𝑀 ∈ ℕ0 )
Assertion dvnmptdivc ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 dvnmptdivc.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvnmptdivc.x ( 𝜑𝑋𝑆 )
3 dvnmptdivc.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
4 dvnmptdivc.b ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ )
5 dvnmptdivc.dvn ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) )
6 dvnmptdivc.c ( 𝜑𝐶 ∈ ℂ )
7 dvnmptdivc.cne0 ( 𝜑𝐶 ≠ 0 )
8 dvnmptdivc.8 ( 𝜑𝑀 ∈ ℕ0 )
9 simpr ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝑛 ∈ ( 0 ... 𝑀 ) )
10 simpl ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝜑 )
11 fveq2 ( 𝑘 = 0 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) )
12 csbeq1 ( 𝑘 = 0 → 𝑘 / 𝑛 𝐵 = 0 / 𝑛 𝐵 )
13 12 oveq1d ( 𝑘 = 0 → ( 𝑘 / 𝑛 𝐵 / 𝐶 ) = ( 0 / 𝑛 𝐵 / 𝐶 ) )
14 13 mpteq2dv ( 𝑘 = 0 → ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) = ( 𝑥𝑋 ↦ ( 0 / 𝑛 𝐵 / 𝐶 ) ) )
15 11 14 eqeq12d ( 𝑘 = 0 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥𝑋 ↦ ( 0 / 𝑛 𝐵 / 𝐶 ) ) ) )
16 15 imbi2d ( 𝑘 = 0 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥𝑋 ↦ ( 0 / 𝑛 𝐵 / 𝐶 ) ) ) ) )
17 fveq2 ( 𝑘 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) )
18 csbeq1 ( 𝑘 = 𝑗 𝑘 / 𝑛 𝐵 = 𝑗 / 𝑛 𝐵 )
19 18 oveq1d ( 𝑘 = 𝑗 → ( 𝑘 / 𝑛 𝐵 / 𝐶 ) = ( 𝑗 / 𝑛 𝐵 / 𝐶 ) )
20 19 mpteq2dv ( 𝑘 = 𝑗 → ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) )
21 17 20 eqeq12d ( 𝑘 = 𝑗 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) )
22 21 imbi2d ( 𝑘 = 𝑗 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ) )
23 fveq2 ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) )
24 csbeq1 ( 𝑘 = ( 𝑗 + 1 ) → 𝑘 / 𝑛 𝐵 = ( 𝑗 + 1 ) / 𝑛 𝐵 )
25 24 oveq1d ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 / 𝑛 𝐵 / 𝐶 ) = ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) )
26 25 mpteq2dv ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) )
27 23 26 eqeq12d ( 𝑘 = ( 𝑗 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) ) )
28 27 imbi2d ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) ) ) )
29 fveq2 ( 𝑘 = 𝑛 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) )
30 csbeq1a ( 𝑛 = 𝑘𝐵 = 𝑘 / 𝑛 𝐵 )
31 30 equcoms ( 𝑘 = 𝑛𝐵 = 𝑘 / 𝑛 𝐵 )
32 31 eqcomd ( 𝑘 = 𝑛 𝑘 / 𝑛 𝐵 = 𝐵 )
33 32 oveq1d ( 𝑘 = 𝑛 → ( 𝑘 / 𝑛 𝐵 / 𝐶 ) = ( 𝐵 / 𝐶 ) )
34 33 mpteq2dv ( 𝑘 = 𝑛 → ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) )
35 29 34 eqeq12d ( 𝑘 = 𝑛 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) )
36 35 imbi2d ( 𝑘 = 𝑛 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥𝑋 ↦ ( 𝑘 / 𝑛 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) ) )
37 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
38 1 37 syl ( 𝜑𝑆 ⊆ ℂ )
39 cnex ℂ ∈ V
40 39 a1i ( 𝜑 → ℂ ∈ V )
41 6 adantr ( ( 𝜑𝑥𝑋 ) → 𝐶 ∈ ℂ )
42 7 adantr ( ( 𝜑𝑥𝑋 ) → 𝐶 ≠ 0 )
43 3 41 42 divcld ( ( 𝜑𝑥𝑋 ) → ( 𝐴 / 𝐶 ) ∈ ℂ )
44 43 fmpttd ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) : 𝑋 ⟶ ℂ )
45 elpm2r ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) : 𝑋 ⟶ ℂ ∧ 𝑋𝑆 ) ) → ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) )
46 40 1 44 2 45 syl22anc ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) )
47 dvn0 ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) )
48 38 46 47 syl2anc ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) )
49 id ( 𝜑𝜑 )
50 nn0uz 0 = ( ℤ ‘ 0 )
51 8 50 eleqtrdi ( 𝜑𝑀 ∈ ( ℤ ‘ 0 ) )
52 eluzfz1 ( 𝑀 ∈ ( ℤ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) )
53 51 52 syl ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) )
54 nfv 𝑛 ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) )
55 nfcv 𝑛 ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 )
56 nfcv 𝑛 𝑋
57 nfcsb1v 𝑛 0 / 𝑛 𝐵
58 56 57 nfmpt 𝑛 ( 𝑥𝑋 0 / 𝑛 𝐵 )
59 55 58 nfeq 𝑛 ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 )
60 54 59 nfim 𝑛 ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 ) )
61 c0ex 0 ∈ V
62 eleq1 ( 𝑛 = 0 → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ 0 ∈ ( 0 ... 𝑀 ) ) )
63 62 anbi2d ( 𝑛 = 0 → ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) ) )
64 fveq2 ( 𝑛 = 0 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) )
65 csbeq1a ( 𝑛 = 0 → 𝐵 = 0 / 𝑛 𝐵 )
66 65 mpteq2dv ( 𝑛 = 0 → ( 𝑥𝑋𝐵 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 ) )
67 64 66 eqeq12d ( 𝑛 = 0 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 ) ) )
68 63 67 imbi12d ( 𝑛 = 0 → ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 ) ) ) )
69 60 61 68 5 vtoclf ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 ) )
70 49 53 69 syl2anc ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 ) )
71 70 fveq1d ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥𝑋 0 / 𝑛 𝐵 ) ‘ 𝑥 ) )
72 71 adantr ( ( 𝜑𝑥𝑋 ) → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥𝑋 0 / 𝑛 𝐵 ) ‘ 𝑥 ) )
73 simpr ( ( 𝜑𝑥𝑋 ) → 𝑥𝑋 )
74 simpl ( ( 𝜑𝑥𝑋 ) → 𝜑 )
75 53 adantr ( ( 𝜑𝑥𝑋 ) → 0 ∈ ( 0 ... 𝑀 ) )
76 0re 0 ∈ ℝ
77 nfcv 𝑛 0
78 nfv 𝑛 ( 𝜑𝑥𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) )
79 nfcv 𝑛
80 57 79 nfel 𝑛 0 / 𝑛 𝐵 ∈ ℂ
81 78 80 nfim 𝑛 ( ( 𝜑𝑥𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → 0 / 𝑛 𝐵 ∈ ℂ )
82 62 3anbi3d ( 𝑛 = 0 → ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑𝑥𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) ) )
83 65 eleq1d ( 𝑛 = 0 → ( 𝐵 ∈ ℂ ↔ 0 / 𝑛 𝐵 ∈ ℂ ) )
84 82 83 imbi12d ( 𝑛 = 0 → ( ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑥𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → 0 / 𝑛 𝐵 ∈ ℂ ) ) )
85 77 81 84 4 vtoclgf ( 0 ∈ ℝ → ( ( 𝜑𝑥𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → 0 / 𝑛 𝐵 ∈ ℂ ) )
86 76 85 ax-mp ( ( 𝜑𝑥𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → 0 / 𝑛 𝐵 ∈ ℂ )
87 74 73 75 86 syl3anc ( ( 𝜑𝑥𝑋 ) → 0 / 𝑛 𝐵 ∈ ℂ )
88 eqid ( 𝑥𝑋 0 / 𝑛 𝐵 ) = ( 𝑥𝑋 0 / 𝑛 𝐵 )
89 88 fvmpt2 ( ( 𝑥𝑋 0 / 𝑛 𝐵 ∈ ℂ ) → ( ( 𝑥𝑋 0 / 𝑛 𝐵 ) ‘ 𝑥 ) = 0 / 𝑛 𝐵 )
90 73 87 89 syl2anc ( ( 𝜑𝑥𝑋 ) → ( ( 𝑥𝑋 0 / 𝑛 𝐵 ) ‘ 𝑥 ) = 0 / 𝑛 𝐵 )
91 72 90 eqtr2d ( ( 𝜑𝑥𝑋 ) → 0 / 𝑛 𝐵 = ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) )
92 3 fmpttd ( 𝜑 → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ )
93 elpm2r ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ ∧ 𝑋𝑆 ) ) → ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) )
94 40 1 92 2 93 syl22anc ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) )
95 dvn0 ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋𝐴 ) )
96 38 94 95 syl2anc ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) = ( 𝑥𝑋𝐴 ) )
97 96 fveq1d ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥𝑋𝐴 ) ‘ 𝑥 ) )
98 97 adantr ( ( 𝜑𝑥𝑋 ) → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥𝑋𝐴 ) ‘ 𝑥 ) )
99 eqid ( 𝑥𝑋𝐴 ) = ( 𝑥𝑋𝐴 )
100 99 fvmpt2 ( ( 𝑥𝑋𝐴 ∈ ℂ ) → ( ( 𝑥𝑋𝐴 ) ‘ 𝑥 ) = 𝐴 )
101 73 3 100 syl2anc ( ( 𝜑𝑥𝑋 ) → ( ( 𝑥𝑋𝐴 ) ‘ 𝑥 ) = 𝐴 )
102 91 98 101 3eqtrrd ( ( 𝜑𝑥𝑋 ) → 𝐴 = 0 / 𝑛 𝐵 )
103 102 oveq1d ( ( 𝜑𝑥𝑋 ) → ( 𝐴 / 𝐶 ) = ( 0 / 𝑛 𝐵 / 𝐶 ) )
104 103 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) = ( 𝑥𝑋 ↦ ( 0 / 𝑛 𝐵 / 𝐶 ) ) )
105 48 104 eqtrd ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥𝑋 ↦ ( 0 / 𝑛 𝐵 / 𝐶 ) ) )
106 105 a1i ( 𝑀 ∈ ( ℤ ‘ 0 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥𝑋 ↦ ( 0 / 𝑛 𝐵 / 𝐶 ) ) ) )
107 simp3 ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝜑 )
108 simp1 ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) )
109 simpr ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝜑 )
110 simpl ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) )
111 109 110 mpd ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) )
112 111 3adant1 ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) )
113 38 ad2antrr ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → 𝑆 ⊆ ℂ )
114 46 ad2antrr ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) )
115 elfzofz ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
116 elfznn0 ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 )
117 116 ad2antlr ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → 𝑗 ∈ ℕ0 )
118 115 117 sylanl2 ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → 𝑗 ∈ ℕ0 )
119 dvnp1 ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) )
120 113 114 118 119 syl3anc ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) )
121 oveq2 ( ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) )
122 121 adantl ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) )
123 38 adantr ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ⊆ ℂ )
124 46 adantr ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) )
125 simpr ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
126 125 116 syl ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℕ0 )
127 115 126 sylan2 ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ℕ0 )
128 123 124 127 119 syl3anc ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) )
129 128 adantr ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) )
130 1 adantr ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } )
131 simplr ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥𝑋 ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
132 49 ad2antrr ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥𝑋 ) → 𝜑 )
133 simpr ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥𝑋 ) → 𝑥𝑋 )
134 132 133 131 3jca ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥𝑋 ) → ( 𝜑𝑥𝑋𝑗 ∈ ( 0 ... 𝑀 ) ) )
135 nfcv 𝑛 𝑗
136 nfv 𝑛 ( 𝜑𝑥𝑋𝑗 ∈ ( 0 ... 𝑀 ) )
137 135 nfcsb1 𝑛 𝑗 / 𝑛 𝐵
138 137 79 nfel 𝑛 𝑗 / 𝑛 𝐵 ∈ ℂ
139 136 138 nfim 𝑛 ( ( 𝜑𝑥𝑋𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 / 𝑛 𝐵 ∈ ℂ )
140 eleq1 ( 𝑛 = 𝑗 → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ 𝑗 ∈ ( 0 ... 𝑀 ) ) )
141 140 3anbi3d ( 𝑛 = 𝑗 → ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑𝑥𝑋𝑗 ∈ ( 0 ... 𝑀 ) ) ) )
142 csbeq1a ( 𝑛 = 𝑗𝐵 = 𝑗 / 𝑛 𝐵 )
143 142 eleq1d ( 𝑛 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝑗 / 𝑛 𝐵 ∈ ℂ ) )
144 141 143 imbi12d ( 𝑛 = 𝑗 → ( ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑥𝑋𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 / 𝑛 𝐵 ∈ ℂ ) ) )
145 135 139 144 4 vtoclgf ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝜑𝑥𝑋𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 / 𝑛 𝐵 ∈ ℂ ) )
146 131 134 145 sylc ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥𝑋 ) → 𝑗 / 𝑛 𝐵 ∈ ℂ )
147 115 146 sylanl2 ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥𝑋 ) → 𝑗 / 𝑛 𝐵 ∈ ℂ )
148 fzofzp1 ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) )
149 148 ad2antlr ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥𝑋 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) )
150 115 132 sylanl2 ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥𝑋 ) → 𝜑 )
151 simpr ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥𝑋 ) → 𝑥𝑋 )
152 150 151 149 3jca ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥𝑋 ) → ( 𝜑𝑥𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) )
153 nfcv 𝑛 ( 𝑗 + 1 )
154 nfv 𝑛 ( 𝜑𝑥𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) )
155 153 nfcsb1 𝑛 ( 𝑗 + 1 ) / 𝑛 𝐵
156 155 79 nfel 𝑛 ( 𝑗 + 1 ) / 𝑛 𝐵 ∈ ℂ
157 154 156 nfim 𝑛 ( ( 𝜑𝑥𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( 𝑗 + 1 ) / 𝑛 𝐵 ∈ ℂ )
158 eleq1 ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) )
159 158 3anbi3d ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑𝑥𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) )
160 csbeq1a ( 𝑛 = ( 𝑗 + 1 ) → 𝐵 = ( 𝑗 + 1 ) / 𝑛 𝐵 )
161 160 eleq1d ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐵 ∈ ℂ ↔ ( 𝑗 + 1 ) / 𝑛 𝐵 ∈ ℂ ) )
162 159 161 imbi12d ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝜑𝑥𝑋𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑥𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( 𝑗 + 1 ) / 𝑛 𝐵 ∈ ℂ ) ) )
163 153 157 162 4 vtoclgf ( ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝜑𝑥𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( 𝑗 + 1 ) / 𝑛 𝐵 ∈ ℂ ) )
164 149 152 163 sylc ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥𝑋 ) → ( 𝑗 + 1 ) / 𝑛 𝐵 ∈ ℂ )
165 simpl ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝜑 )
166 115 adantl ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
167 nfv 𝑛 ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) )
168 nfcv 𝑛 ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 )
169 56 137 nfmpt 𝑛 ( 𝑥𝑋 𝑗 / 𝑛 𝐵 )
170 168 169 nfeq 𝑛 ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) = ( 𝑥𝑋 𝑗 / 𝑛 𝐵 )
171 167 170 nfim 𝑛 ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) = ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) )
172 140 anbi2d ( 𝑛 = 𝑗 → ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) ) )
173 fveq2 ( 𝑛 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) )
174 142 mpteq2dv ( 𝑛 = 𝑗 → ( 𝑥𝑋𝐵 ) = ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) )
175 173 174 eqeq12d ( 𝑛 = 𝑗 → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) = ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) ) )
176 172 175 imbi12d ( 𝑛 = 𝑗 → ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) ) ↔ ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) = ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) ) ) )
177 171 176 5 chvarfv ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) = ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) )
178 165 166 177 syl2anc ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) = ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) )
179 178 eqcomd ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) )
180 179 oveq2d ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) ) )
181 165 94 syl ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) )
182 dvnp1 ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥𝑋𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) ) )
183 123 181 127 182 syl3anc ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) ) )
184 183 eqcomd ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑗 ) ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) )
185 148 adantl ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) )
186 165 185 jca ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) )
187 nfv 𝑛 ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) )
188 nfcv 𝑛 ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) )
189 56 155 nfmpt 𝑛 ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 )
190 188 189 nfeq 𝑛 ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 )
191 187 190 nfim 𝑛 ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 ) )
192 158 anbi2d ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) )
193 fveq2 ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) )
194 160 mpteq2dv ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑥𝑋𝐵 ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 ) )
195 193 194 eqeq12d ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 ) ) )
196 192 195 imbi12d ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ 𝑛 ) = ( 𝑥𝑋𝐵 ) ) ↔ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 ) ) ) )
197 153 191 196 5 vtoclgf ( ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 ) ) )
198 185 186 197 sylc ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 ) )
199 180 184 198 3eqtrd ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑛 𝐵 ) ) = ( 𝑥𝑋 ( 𝑗 + 1 ) / 𝑛 𝐵 ) )
200 6 adantr ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ∈ ℂ )
201 7 adantr ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ≠ 0 )
202 130 147 164 199 200 201 dvmptdivc ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) )
203 202 adantr ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) )
204 129 122 203 3eqtrd ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) )
205 204 eqcomd ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) = ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) )
206 205 120 122 3eqtrrd ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) )
207 120 122 206 3eqtrd ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) )
208 107 108 112 207 syl21anc ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) )
209 208 3exp ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥𝑋 ↦ ( 𝑗 / 𝑛 𝐵 / 𝐶 ) ) ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥𝑋 ↦ ( ( 𝑗 + 1 ) / 𝑛 𝐵 / 𝐶 ) ) ) ) )
210 16 22 28 36 106 209 fzind2 ( 𝑛 ∈ ( 0 ... 𝑀 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) )
211 9 10 210 sylc ( ( 𝜑𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) )