| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnmptdivc.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvnmptdivc.x | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 3 |  | dvnmptdivc.a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | dvnmptdivc.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | dvnmptdivc.dvn | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 6 |  | dvnmptdivc.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 7 |  | dvnmptdivc.cne0 | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 8 |  | dvnmptdivc.8 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  𝑛  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 0 ) ) | 
						
							| 12 |  | csbeq1 | ⊢ ( 𝑘  =  0  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  =  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑘  =  0  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 )  =  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) | 
						
							| 14 | 13 | mpteq2dv | ⊢ ( 𝑘  =  0  →  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 15 | 11 14 | eqeq12d | ⊢ ( 𝑘  =  0  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑘  =  0  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 ) ) | 
						
							| 18 |  | csbeq1 | ⊢ ( 𝑘  =  𝑗  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑘  =  𝑗  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 )  =  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) | 
						
							| 20 | 19 | mpteq2dv | ⊢ ( 𝑘  =  𝑗  →  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 21 | 17 20 | eqeq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) | 
						
							| 22 | 21 | imbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 24 |  | csbeq1 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  =  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 )  =  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) | 
						
							| 26 | 25 | mpteq2dv | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 27 | 23 26 | eqeq12d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑛 ) ) | 
						
							| 30 |  | csbeq1a | ⊢ ( 𝑛  =  𝑘  →  𝐵  =  ⦋ 𝑘  /  𝑛 ⦌ 𝐵 ) | 
						
							| 31 | 30 | equcoms | ⊢ ( 𝑘  =  𝑛  →  𝐵  =  ⦋ 𝑘  /  𝑛 ⦌ 𝐵 ) | 
						
							| 32 | 31 | eqcomd | ⊢ ( 𝑘  =  𝑛  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐵  =  𝐵 ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝑘  =  𝑛  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 )  =  ( 𝐵  /  𝐶 ) ) | 
						
							| 34 | 33 | mpteq2dv | ⊢ ( 𝑘  =  𝑛  →  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐵  /  𝐶 ) ) ) | 
						
							| 35 | 29 34 | eqeq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐵  /  𝐶 ) ) ) ) | 
						
							| 36 | 35 | imbi2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ↔  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐵  /  𝐶 ) ) ) ) ) | 
						
							| 37 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 38 | 1 37 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 39 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 41 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ ) | 
						
							| 42 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐶  ≠  0 ) | 
						
							| 43 | 3 41 42 | divcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴  /  𝐶 )  ∈  ℂ ) | 
						
							| 44 | 43 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 45 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  𝑆  ∈  { ℝ ,  ℂ } )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) : 𝑋 ⟶ ℂ  ∧  𝑋  ⊆  𝑆 ) )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 46 | 40 1 44 2 45 | syl22anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 47 |  | dvn0 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) )  ∈  ( ℂ  ↑pm  𝑆 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) | 
						
							| 48 | 38 46 47 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) | 
						
							| 49 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 50 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 51 | 8 50 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 52 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 54 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 55 |  | nfcv | ⊢ Ⅎ 𝑛 ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 ) | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑛 𝑋 | 
						
							| 57 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 0  /  𝑛 ⦌ 𝐵 | 
						
							| 58 | 56 57 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 59 | 55 58 | nfeq | ⊢ Ⅎ 𝑛 ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 60 | 54 59 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 61 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 62 |  | eleq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛  ∈  ( 0 ... 𝑀 )  ↔  0  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 63 | 62 | anbi2d | ⊢ ( 𝑛  =  0  →  ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  ↔  ( 𝜑  ∧  0  ∈  ( 0 ... 𝑀 ) ) ) ) | 
						
							| 64 |  | fveq2 | ⊢ ( 𝑛  =  0  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 ) ) | 
						
							| 65 |  | csbeq1a | ⊢ ( 𝑛  =  0  →  𝐵  =  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 66 | 65 | mpteq2dv | ⊢ ( 𝑛  =  0  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 67 | 64 66 | eqeq12d | ⊢ ( 𝑛  =  0  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 68 | 63 67 | imbi12d | ⊢ ( 𝑛  =  0  →  ( ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) )  ↔  ( ( 𝜑  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ) ) ) | 
						
							| 69 | 60 61 68 5 | vtoclf | ⊢ ( ( 𝜑  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 70 | 49 53 69 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 71 | 70 | fveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) ) | 
						
							| 73 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 74 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝜑 ) | 
						
							| 75 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 76 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 77 |  | nfcv | ⊢ Ⅎ 𝑛 0 | 
						
							| 78 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 79 |  | nfcv | ⊢ Ⅎ 𝑛 ℂ | 
						
							| 80 | 57 79 | nfel | ⊢ Ⅎ 𝑛 ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ | 
						
							| 81 | 78 80 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 82 | 62 | 3anbi3d | ⊢ ( 𝑛  =  0  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  0  ∈  ( 0 ... 𝑀 ) ) ) ) | 
						
							| 83 | 65 | eleq1d | ⊢ ( 𝑛  =  0  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 84 | 82 83 | imbi12d | ⊢ ( 𝑛  =  0  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 85 | 77 81 84 4 | vtoclgf | ⊢ ( 0  ∈  ℝ  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 86 | 76 85 | ax-mp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  0  ∈  ( 0 ... 𝑀 ) )  →  ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 87 | 74 73 75 86 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 88 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 89 | 88 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  ⦋ 0  /  𝑛 ⦌ 𝐵  ∈  ℂ )  →  ( ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ‘ 𝑥 )  =  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 90 | 73 87 89 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ⦋ 0  /  𝑛 ⦌ 𝐵 ) ‘ 𝑥 )  =  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 91 | 72 90 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ⦋ 0  /  𝑛 ⦌ 𝐵  =  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) ) | 
						
							| 92 | 3 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ℂ ) | 
						
							| 93 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  𝑆  ∈  { ℝ ,  ℂ } )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ℂ  ∧  𝑋  ⊆  𝑆 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 94 | 40 1 92 2 93 | syl22anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 95 |  | dvn0 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 96 | 38 94 95 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 97 | 96 | fveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 0 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ) | 
						
							| 99 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) | 
						
							| 100 | 99 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝐴  ∈  ℂ )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 101 | 73 3 100 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 102 | 91 98 101 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  =  ⦋ 0  /  𝑛 ⦌ 𝐵 ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴  /  𝐶 )  =  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) | 
						
							| 104 | 103 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 105 | 48 104 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 106 | 105 | a1i | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 0  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) | 
						
							| 107 |  | simp3 | ⊢ ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 108 |  | simp1 | ⊢ ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ∧  𝜑 )  →  𝑗  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 109 |  | simpr | ⊢ ( ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 110 |  | simpl | ⊢ ( ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ∧  𝜑 )  →  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) | 
						
							| 111 | 109 110 | mpd | ⊢ ( ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ∧  𝜑 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 112 | 111 | 3adant1 | ⊢ ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ∧  𝜑 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 113 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  𝑆  ⊆  ℂ ) | 
						
							| 114 | 46 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 115 |  | elfzofz | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 116 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 117 | 116 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 118 | 115 117 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 119 |  | dvnp1 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) )  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 120 | 113 114 118 119 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 121 |  | oveq2 | ⊢ ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  →  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 ) )  =  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) | 
						
							| 123 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑆  ⊆  ℂ ) | 
						
							| 124 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 125 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 126 | 125 116 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 127 | 115 126 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 128 | 123 124 127 119 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 130 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 131 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 132 | 49 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  𝜑 ) | 
						
							| 133 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 134 | 132 133 131 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑗  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 135 |  | nfcv | ⊢ Ⅎ 𝑛 𝑗 | 
						
							| 136 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 137 | 135 | nfcsb1 | ⊢ Ⅎ 𝑛 ⦋ 𝑗  /  𝑛 ⦌ 𝐵 | 
						
							| 138 | 137 79 | nfel | ⊢ Ⅎ 𝑛 ⦋ 𝑗  /  𝑛 ⦌ 𝐵  ∈  ℂ | 
						
							| 139 | 136 138 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ⦋ 𝑗  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 140 |  | eleq1 | ⊢ ( 𝑛  =  𝑗  →  ( 𝑛  ∈  ( 0 ... 𝑀 )  ↔  𝑗  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 141 | 140 | 3anbi3d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑗  ∈  ( 0 ... 𝑀 ) ) ) ) | 
						
							| 142 |  | csbeq1a | ⊢ ( 𝑛  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) | 
						
							| 143 | 142 | eleq1d | ⊢ ( 𝑛  =  𝑗  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝑗  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 144 | 141 143 | imbi12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ⦋ 𝑗  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 145 | 135 139 144 4 | vtoclgf | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ⦋ 𝑗  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 146 | 131 134 145 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 147 | 115 146 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 148 |  | fzofzp1 | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 149 | 148 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 150 | 115 132 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  𝜑 ) | 
						
							| 151 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 152 | 150 151 149 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 153 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑗  +  1 ) | 
						
							| 154 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 155 | 153 | nfcsb1 | ⊢ Ⅎ 𝑛 ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 | 
						
							| 156 | 155 79 | nfel | ⊢ Ⅎ 𝑛 ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  ∈  ℂ | 
						
							| 157 | 154 156 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) )  →  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 158 |  | eleq1 | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( 𝑛  ∈  ( 0 ... 𝑀 )  ↔  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 159 | 158 | 3anbi3d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) ) | 
						
							| 160 |  | csbeq1a | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  𝐵  =  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 161 | 160 | eleq1d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( 𝐵  ∈  ℂ  ↔  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 162 | 159 161 | imbi12d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) )  →  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 163 | 153 157 162 4 | vtoclgf | ⊢ ( ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) )  →  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 164 | 149 152 163 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  𝑋 )  →  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 165 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝜑 ) | 
						
							| 166 | 115 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 167 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 168 |  | nfcv | ⊢ Ⅎ 𝑛 ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 ) | 
						
							| 169 | 56 137 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) | 
						
							| 170 | 168 169 | nfeq | ⊢ Ⅎ 𝑛 ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) | 
						
							| 171 | 167 170 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 172 | 140 | anbi2d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) ) ) ) | 
						
							| 173 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 ) ) | 
						
							| 174 | 142 | mpteq2dv | ⊢ ( 𝑛  =  𝑗  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 175 | 173 174 | eqeq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 176 | 172 175 | imbi12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) ) ) ) | 
						
							| 177 | 171 176 5 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 178 | 165 166 177 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 179 | 178 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 ) ) | 
						
							| 180 | 179 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 ) ) ) | 
						
							| 181 | 165 94 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 182 |  | dvnp1 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 ) ) ) | 
						
							| 183 | 123 181 127 182 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 ) ) ) | 
						
							| 184 | 183 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆  D  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑗 ) )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 185 | 148 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 186 | 165 185 | jca | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 187 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 188 |  | nfcv | ⊢ Ⅎ 𝑛 ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) ) | 
						
							| 189 | 56 155 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 190 | 188 189 | nfeq | ⊢ Ⅎ 𝑛 ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 191 | 187 190 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 192 | 158 | anbi2d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  ↔  ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) ) | 
						
							| 193 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 194 | 160 | mpteq2dv | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 195 | 193 194 | eqeq12d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 196 | 192 195 | imbi12d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) )  ↔  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) ) ) ) | 
						
							| 197 | 153 191 196 5 | vtoclgf | ⊢ ( ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 )  →  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 198 | 185 186 197 | sylc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 199 | 180 184 198 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ⦋ 𝑗  /  𝑛 ⦌ 𝐵 ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 200 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 201 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝐶  ≠  0 ) | 
						
							| 202 | 130 147 164 199 200 201 | dvmptdivc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 203 | 202 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 204 | 129 122 203 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 205 | 204 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 206 | 205 120 122 | 3eqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( 𝑆  D  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 207 | 120 122 206 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 208 | 107 108 112 207 | syl21anc | ⊢ ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  ∧  𝜑 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) | 
						
							| 209 | 208 | 3exp | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  ( ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ 𝑗  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) )  →  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ⦋ ( 𝑗  +  1 )  /  𝑛 ⦌ 𝐵  /  𝐶 ) ) ) ) ) | 
						
							| 210 | 16 22 28 36 106 209 | fzind2 | ⊢ ( 𝑛  ∈  ( 0 ... 𝑀 )  →  ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐵  /  𝐶 ) ) ) ) | 
						
							| 211 | 9 10 210 | sylc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  /  𝐶 ) ) ) ‘ 𝑛 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐵  /  𝐶 ) ) ) |