Step |
Hyp |
Ref |
Expression |
1 |
|
dvnmptdivc.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvnmptdivc.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
3 |
|
dvnmptdivc.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
4 |
|
dvnmptdivc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) |
5 |
|
dvnmptdivc.dvn |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
6 |
|
dvnmptdivc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
7 |
|
dvnmptdivc.cne0 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
8 |
|
dvnmptdivc.8 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝑛 ∈ ( 0 ... 𝑀 ) ) |
10 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝜑 ) |
11 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) ) |
12 |
|
csbeq1 |
⊢ ( 𝑘 = 0 → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
13 |
12
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
14 |
13
|
mpteq2dv |
⊢ ( 𝑘 = 0 → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
15 |
11 14
|
eqeq12d |
⊢ ( 𝑘 = 0 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑘 = 0 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) |
18 |
|
csbeq1 |
⊢ ( 𝑘 = 𝑗 → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
19 |
18
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑘 = 𝑗 → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
21 |
17 20
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
24 |
|
csbeq1 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
25 |
24
|
oveq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
26 |
25
|
mpteq2dv |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
27 |
23 26
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) ) |
30 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) |
31 |
30
|
equcoms |
⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) |
32 |
31
|
eqcomd |
⊢ ( 𝑘 = 𝑛 → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = 𝐵 ) |
33 |
32
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) |
34 |
33
|
mpteq2dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) |
35 |
29 34
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) ) ) |
37 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
38 |
1 37
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
39 |
|
cnex |
⊢ ℂ ∈ V |
40 |
39
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
41 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
42 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ≠ 0 ) |
43 |
3 41 42
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
44 |
43
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) : 𝑋 ⟶ ℂ ) |
45 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
46 |
40 1 44 2 45
|
syl22anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
47 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) |
48 |
38 46 47
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) |
49 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
50 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
51 |
8 50
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
52 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
54 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) |
55 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) |
56 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑋 |
57 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 0 / 𝑛 ⦌ 𝐵 |
58 |
56 57
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
59 |
55 58
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
60 |
54 59
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
61 |
|
c0ex |
⊢ 0 ∈ V |
62 |
|
eleq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ 0 ∈ ( 0 ... 𝑀 ) ) ) |
63 |
62
|
anbi2d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) ) ) |
64 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ) |
65 |
|
csbeq1a |
⊢ ( 𝑛 = 0 → 𝐵 = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
66 |
65
|
mpteq2dv |
⊢ ( 𝑛 = 0 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
67 |
64 66
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) ) |
68 |
63 67
|
imbi12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) ) ) |
69 |
60 61 68 5
|
vtoclf |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
70 |
49 53 69
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
71 |
70
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) ) |
73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
74 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
75 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
76 |
|
0re |
⊢ 0 ∈ ℝ |
77 |
|
nfcv |
⊢ Ⅎ 𝑛 0 |
78 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑛 ℂ |
80 |
57 79
|
nfel |
⊢ Ⅎ 𝑛 ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ |
81 |
78 80
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
82 |
62
|
3anbi3d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) ) ) |
83 |
65
|
eleq1d |
⊢ ( 𝑛 = 0 → ( 𝐵 ∈ ℂ ↔ ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
84 |
82 83
|
imbi12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) ) |
85 |
77 81 84 4
|
vtoclgf |
⊢ ( 0 ∈ ℝ → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
86 |
76 85
|
ax-mp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
87 |
74 73 75 86
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
88 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
89 |
88
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
90 |
73 87 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
91 |
72 90
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 0 / 𝑛 ⦌ 𝐵 = ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) ) |
92 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
93 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
94 |
40 1 92 2 93
|
syl22anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
95 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
96 |
38 94 95
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
97 |
96
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) |
99 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
100 |
99
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
101 |
73 3 100
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
102 |
91 98 101
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
103 |
102
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐶 ) = ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
104 |
103
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
105 |
48 104
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
106 |
105
|
a1i |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
107 |
|
simp3 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝜑 ) |
108 |
|
simp1 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
109 |
|
simpr |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝜑 ) |
110 |
|
simpl |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
111 |
109 110
|
mpd |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
112 |
111
|
3adant1 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
113 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → 𝑆 ⊆ ℂ ) |
114 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
115 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
116 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
117 |
116
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → 𝑗 ∈ ℕ0 ) |
118 |
115 117
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → 𝑗 ∈ ℕ0 ) |
119 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
120 |
113 114 118 119
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
121 |
|
oveq2 |
⊢ ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
122 |
121
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
123 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ⊆ ℂ ) |
124 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
125 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
126 |
125 116
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
127 |
115 126
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
128 |
123 124 127 119
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
130 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
131 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
132 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
133 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
134 |
132 133 131
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) |
135 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑗 |
136 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) |
137 |
135
|
nfcsb1 |
⊢ Ⅎ 𝑛 ⦋ 𝑗 / 𝑛 ⦌ 𝐵 |
138 |
137 79
|
nfel |
⊢ Ⅎ 𝑛 ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ |
139 |
136 138
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
140 |
|
eleq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) |
141 |
140
|
3anbi3d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) ) |
142 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
143 |
142
|
eleq1d |
⊢ ( 𝑛 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
144 |
141 143
|
imbi12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) ) |
145 |
135 139 144 4
|
vtoclgf |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
146 |
131 134 145
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
147 |
115 146
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
148 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
149 |
148
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
150 |
115 132
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
151 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
152 |
150 151 149
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
153 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑗 + 1 ) |
154 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
155 |
153
|
nfcsb1 |
⊢ Ⅎ 𝑛 ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 |
156 |
155 79
|
nfel |
⊢ Ⅎ 𝑛 ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ |
157 |
154 156
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
158 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
159 |
158
|
3anbi3d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) ) |
160 |
|
csbeq1a |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → 𝐵 = ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
161 |
160
|
eleq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐵 ∈ ℂ ↔ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
162 |
159 161
|
imbi12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) ) |
163 |
153 157 162 4
|
vtoclgf |
⊢ ( ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
164 |
149 152 163
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
165 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝜑 ) |
166 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
167 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) |
168 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) |
169 |
56 137
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
170 |
168 169
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
171 |
167 170
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
172 |
140
|
anbi2d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) ) |
173 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
174 |
142
|
mpteq2dv |
⊢ ( 𝑛 = 𝑗 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
175 |
173 174
|
eqeq12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) ) |
176 |
172 175
|
imbi12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) ) ) |
177 |
171 176 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
178 |
165 166 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
179 |
178
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
180 |
179
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) ) |
181 |
165 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
182 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) ) |
183 |
123 181 127 182
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) ) |
184 |
183
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) ) |
185 |
148
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
186 |
165 185
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
187 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
188 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) |
189 |
56 155
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
190 |
188 189
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
191 |
187 190
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
192 |
158
|
anbi2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) ) |
193 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) ) |
194 |
160
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
195 |
193 194
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) ) |
196 |
192 195
|
imbi12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) ) ) |
197 |
153 191 196 5
|
vtoclgf |
⊢ ( ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) ) |
198 |
185 186 197
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
199 |
180 184 198
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
200 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ∈ ℂ ) |
201 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ≠ 0 ) |
202 |
130 147 164 199 200 201
|
dvmptdivc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
203 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
204 |
129 122 203
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
205 |
204
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
206 |
205 120 122
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
207 |
120 122 206
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
208 |
107 108 112 207
|
syl21anc |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
209 |
208
|
3exp |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
210 |
16 22 28 36 106 209
|
fzind2 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑀 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) ) |
211 |
9 10 210
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) |