| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnprodlem1.c | ⊢ 𝐶  =  ( 𝑠  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 2 |  | dvnprodlem1.j | ⊢ ( 𝜑  →  𝐽  ∈  ℕ0 ) | 
						
							| 3 |  | dvnprodlem1.d | ⊢ 𝐷  =  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ↦  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 4 |  | dvnprodlem1.t | ⊢ ( 𝜑  →  𝑇  ∈  Fin ) | 
						
							| 5 |  | dvnprodlem1.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑇 ) | 
						
							| 6 |  | dvnprodlem1.zr | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 7 |  | dvnprodlem1.rzt | ⊢ ( 𝜑  →  ( 𝑅  ∪  { 𝑍 } )  ⊆  𝑇 ) | 
						
							| 8 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 9 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  0  ∈  ℤ ) | 
						
							| 10 | 2 | nn0zd | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑛  =  𝐽  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝐽 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑛  =  𝐽  →  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  =  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 14 |  | eqeq2 | ⊢ ( 𝑛  =  𝐽  →  ( Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 ) ) | 
						
							| 15 | 13 14 | rabeqbidv | ⊢ ( 𝑛  =  𝐽  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 17 |  | sumeq1 | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  ( Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 19 | 16 18 | rabeqbidv | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 20 | 19 | mpteq2dv | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 21 | 4 7 | sselpwd | ⊢ ( 𝜑  →  ( 𝑅  ∪  { 𝑍 } )  ∈  𝒫  𝑇 ) | 
						
							| 22 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 23 | 22 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V ) | 
						
							| 25 | 1 20 21 24 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 26 |  | ovex | ⊢ ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∈  V | 
						
							| 27 | 26 | rabex | ⊢ { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ∈  V | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ∈  V ) | 
						
							| 29 | 15 25 2 28 | fvmptd4 | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 30 |  | ssrab2 | ⊢ { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ⊆  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 31 | 29 30 | eqsstrdi | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ⊆  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 32 | 31 | sselda | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 33 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 35 |  | snidg | ⊢ ( 𝑍  ∈  𝑇  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 36 |  | elun2 | ⊢ ( 𝑍  ∈  { 𝑍 }  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 37 | 5 35 36 | 3syl | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 39 | 34 38 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 40 | 39 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℤ ) | 
						
							| 41 | 11 40 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℤ ) | 
						
							| 42 |  | elfzle2 | ⊢ ( ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 )  →  ( 𝑐 ‘ 𝑍 )  ≤  𝐽 ) | 
						
							| 43 | 39 42 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ≤  𝐽 ) | 
						
							| 44 | 11 | zred | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝐽  ∈  ℝ ) | 
						
							| 45 | 40 | zred | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 46 | 44 45 | subge0d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 0  ≤  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ↔  ( 𝑐 ‘ 𝑍 )  ≤  𝐽 ) ) | 
						
							| 47 | 43 46 | mpbird | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  0  ≤  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 48 |  | elfzle1 | ⊢ ( ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 )  →  0  ≤  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 49 | 39 48 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  0  ≤  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 50 | 44 45 | subge02d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 0  ≤  ( 𝑐 ‘ 𝑍 )  ↔  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ≤  𝐽 ) ) | 
						
							| 51 | 49 50 | mpbid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ≤  𝐽 ) | 
						
							| 52 | 9 11 41 47 51 | elfzd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 53 |  | eqidd | ⊢ ( 𝑒  =  ( 𝑐  ↾  𝑅 )  →  𝑅  =  𝑅 ) | 
						
							| 54 |  | simpl | ⊢ ( ( 𝑒  =  ( 𝑐  ↾  𝑅 )  ∧  𝑡  ∈  𝑅 )  →  𝑒  =  ( 𝑐  ↾  𝑅 ) ) | 
						
							| 55 | 54 | fveq1d | ⊢ ( ( 𝑒  =  ( 𝑐  ↾  𝑅 )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑒 ‘ 𝑡 )  =  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) | 
						
							| 56 | 53 55 | sumeq12rdv | ⊢ ( 𝑒  =  ( 𝑐  ↾  𝑅 )  →  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑅 ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) | 
						
							| 57 | 56 | eqeq1d | ⊢ ( 𝑒  =  ( 𝑐  ↾  𝑅 )  →  ( Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ↔  Σ 𝑡  ∈  𝑅 ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 58 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ∈  V ) | 
						
							| 59 | 7 | unssad | ⊢ ( 𝜑  →  𝑅  ⊆  𝑇 ) | 
						
							| 60 | 4 59 | ssfid | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑅  ∈  Fin ) | 
						
							| 62 |  | elmapfn | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  →  𝑐  Fn  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 63 | 32 62 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐  Fn  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 64 |  | ssun1 | ⊢ 𝑅  ⊆  ( 𝑅  ∪  { 𝑍 } ) | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑅  ⊆  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 66 | 63 65 | fnssresd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐  ↾  𝑅 )  Fn  𝑅 ) | 
						
							| 67 |  | nfv | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 68 |  | nfcv | ⊢ Ⅎ 𝑡 𝒫  𝑇 | 
						
							| 69 |  | nfcv | ⊢ Ⅎ 𝑡 ℕ0 | 
						
							| 70 |  | nfcv | ⊢ Ⅎ 𝑡 𝑠 | 
						
							| 71 | 70 | nfsum1 | ⊢ Ⅎ 𝑡 Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 ) | 
						
							| 72 | 71 | nfeq1 | ⊢ Ⅎ 𝑡 Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 | 
						
							| 73 |  | nfcv | ⊢ Ⅎ 𝑡 ( ( 0 ... 𝑛 )  ↑m  𝑠 ) | 
						
							| 74 | 72 73 | nfrabw | ⊢ Ⅎ 𝑡 { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } | 
						
							| 75 | 69 74 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 76 | 68 75 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑠  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 77 | 1 76 | nfcxfr | ⊢ Ⅎ 𝑡 𝐶 | 
						
							| 78 |  | nfcv | ⊢ Ⅎ 𝑡 ( 𝑅  ∪  { 𝑍 } ) | 
						
							| 79 | 77 78 | nffv | ⊢ Ⅎ 𝑡 ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 80 |  | nfcv | ⊢ Ⅎ 𝑡 𝐽 | 
						
							| 81 | 79 80 | nffv | ⊢ Ⅎ 𝑡 ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) | 
						
							| 82 | 81 | nfcri | ⊢ Ⅎ 𝑡 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) | 
						
							| 83 | 67 82 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 84 |  | fvres | ⊢ ( 𝑡  ∈  𝑅  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 86 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  0  ∈  ℤ ) | 
						
							| 87 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℤ ) | 
						
							| 88 | 34 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 89 | 65 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 90 | 88 89 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 91 | 90 | elfzelzd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ℤ ) | 
						
							| 92 |  | elfzle1 | ⊢ ( ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝐽 )  →  0  ≤  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 93 | 90 92 | syl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  0  ≤  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 94 | 60 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑅  ∈  Fin ) | 
						
							| 95 |  | fzssre | ⊢ ( 0 ... 𝐽 )  ⊆  ℝ | 
						
							| 96 | 34 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑟  ∈  𝑅 )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 97 | 65 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑟  ∈  𝑅 )  →  𝑟  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 98 | 96 97 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑟  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑟 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 99 | 95 98 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑟  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑟 )  ∈  ℝ ) | 
						
							| 100 | 99 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  ∧  𝑟  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑟 )  ∈  ℝ ) | 
						
							| 101 |  | elfzle1 | ⊢ ( ( 𝑐 ‘ 𝑟 )  ∈  ( 0 ... 𝐽 )  →  0  ≤  ( 𝑐 ‘ 𝑟 ) ) | 
						
							| 102 | 98 101 | syl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑟  ∈  𝑅 )  →  0  ≤  ( 𝑐 ‘ 𝑟 ) ) | 
						
							| 103 | 102 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  ∧  𝑟  ∈  𝑅 )  →  0  ≤  ( 𝑐 ‘ 𝑟 ) ) | 
						
							| 104 |  | fveq2 | ⊢ ( 𝑟  =  𝑡  →  ( 𝑐 ‘ 𝑟 )  =  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 105 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  𝑅 ) | 
						
							| 106 | 94 100 103 104 105 | fsumge1 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ≤  Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 ) ) | 
						
							| 107 | 99 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑟  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑟 )  ∈  ℂ ) | 
						
							| 108 | 61 107 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 )  ∈  ℂ ) | 
						
							| 109 | 40 | zcnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 110 | 104 | cbvsumv | ⊢ Σ 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑟 )  =  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) | 
						
							| 111 |  | nfv | ⊢ Ⅎ 𝑟 ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 112 |  | nfcv | ⊢ Ⅎ 𝑟 ( 𝑐 ‘ 𝑍 ) | 
						
							| 113 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑍  ∈  𝑇 ) | 
						
							| 114 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 115 |  | fveq2 | ⊢ ( 𝑟  =  𝑍  →  ( 𝑐 ‘ 𝑟 )  =  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 116 | 111 112 61 113 114 107 115 109 | fsumsplitsn | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  Σ 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑟 )  =  ( Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 )  +  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 117 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 118 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 119 | 117 118 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 120 |  | rabid | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ↔  ( 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∧  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 ) ) | 
						
							| 121 | 119 120 | sylib | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∧  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 ) ) | 
						
							| 122 | 121 | simprd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 ) | 
						
							| 123 | 110 116 122 | 3eqtr3a | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 )  +  ( 𝑐 ‘ 𝑍 ) )  =  𝐽 ) | 
						
							| 124 | 108 109 123 | mvlraddd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 125 | 124 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 126 | 106 125 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ≤  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 127 | 86 87 91 93 126 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 128 | 85 127 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  ∈  ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 129 | 83 128 | ralrimia | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∀ 𝑡  ∈  𝑅 ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  ∈  ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 130 |  | ffnfv | ⊢ ( ( 𝑐  ↾  𝑅 ) : 𝑅 ⟶ ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↔  ( ( 𝑐  ↾  𝑅 )  Fn  𝑅  ∧  ∀ 𝑡  ∈  𝑅 ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  ∈  ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 131 | 66 129 130 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐  ↾  𝑅 ) : 𝑅 ⟶ ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 132 | 58 61 131 | elmapdd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐  ↾  𝑅 )  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 ) ) | 
						
							| 133 | 84 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑡  ∈  𝑅  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 134 | 83 133 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∀ 𝑡  ∈  𝑅 ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 135 | 134 | sumeq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  Σ 𝑡  ∈  𝑅 ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 136 | 104 | cbvsumv | ⊢ Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 )  =  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 ) | 
						
							| 137 | 136 | eqcomi | ⊢ Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 ) | 
						
							| 138 | 137 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑟  ∈  𝑅 ( 𝑐 ‘ 𝑟 ) ) | 
						
							| 139 | 135 138 124 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  Σ 𝑡  ∈  𝑅 ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 140 | 57 132 139 | elrabd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐  ↾  𝑅 )  ∈  { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) } ) | 
						
							| 141 |  | fveq1 | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 142 | 141 | sumeq2sdv | ⊢ ( 𝑐  =  𝑒  →  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 143 | 142 | eqeq1d | ⊢ ( 𝑐  =  𝑒  →  ( Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚  ↔  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  𝑚 ) ) | 
						
							| 144 | 143 | cbvrabv | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  𝑚 } | 
						
							| 145 | 144 | a1i | ⊢ ( 𝑚  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  𝑚 } ) | 
						
							| 146 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  ( 0 ... 𝑚 )  =  ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 147 | 146 | oveq1d | ⊢ ( 𝑚  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  =  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 ) ) | 
						
							| 148 | 147 | rabeqdv | ⊢ ( 𝑚  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  𝑚 } ) | 
						
							| 149 |  | eqeq2 | ⊢ ( 𝑚  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  ( Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  𝑚  ↔  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 150 | 149 | rabbidv | ⊢ ( 𝑚  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) } ) | 
						
							| 151 | 145 148 150 | 3eqtrd | ⊢ ( 𝑚  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) } ) | 
						
							| 152 |  | oveq2 | ⊢ ( 𝑠  =  𝑅  →  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑅 ) ) | 
						
							| 153 |  | sumeq1 | ⊢ ( 𝑠  =  𝑅  →  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 154 | 153 | eqeq1d | ⊢ ( 𝑠  =  𝑅  →  ( Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 155 | 152 154 | rabeqbidv | ⊢ ( 𝑠  =  𝑅  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 156 | 155 | mpteq2dv | ⊢ ( 𝑠  =  𝑅  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 157 | 4 59 | sselpwd | ⊢ ( 𝜑  →  𝑅  ∈  𝒫  𝑇 ) | 
						
							| 158 | 22 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V | 
						
							| 159 | 158 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V ) | 
						
							| 160 | 1 156 157 159 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑅 )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐶 ‘ 𝑅 )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 162 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑚 ) ) | 
						
							| 163 | 162 | oveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  =  ( ( 0 ... 𝑚 )  ↑m  𝑅 ) ) | 
						
							| 164 |  | eqeq2 | ⊢ ( 𝑛  =  𝑚  →  ( Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚 ) ) | 
						
							| 165 | 163 164 | rabeqbidv | ⊢ ( 𝑛  =  𝑚  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚 } ) | 
						
							| 166 | 165 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚 } ) | 
						
							| 167 | 161 166 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐶 ‘ 𝑅 )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑚 } ) ) | 
						
							| 168 |  | elnn0z | ⊢ ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℕ0  ↔  ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℤ  ∧  0  ≤  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 169 | 41 47 168 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℕ0 ) | 
						
							| 170 |  | ovex | ⊢ ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∈  V | 
						
							| 171 | 170 | rabex | ⊢ { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) }  ∈  V | 
						
							| 172 | 171 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) }  ∈  V ) | 
						
							| 173 | 151 167 169 172 | fvmptd4 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  { 𝑒  ∈  ( ( 0 ... ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑒 ‘ 𝑡 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) } ) | 
						
							| 174 | 140 173 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐  ↾  𝑅 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 175 | 52 174 | jca | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 )  ∧  ( 𝑐  ↾  𝑅 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 176 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  V ) | 
						
							| 177 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 178 | 177 | resex | ⊢ ( 𝑐  ↾  𝑅 )  ∈  V | 
						
							| 179 |  | opeq12 | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  〈 𝑘 ,  𝑑 〉  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 180 | 179 | eqeq2d | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 𝑘 ,  𝑑 〉  ↔  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) ) | 
						
							| 181 |  | eleq1 | ⊢ ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↔  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↔  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 183 |  | simpr | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  𝑑  =  ( 𝑐  ↾  𝑅 ) ) | 
						
							| 184 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 185 | 184 | adantr | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 186 | 183 185 | eleq12d | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  ( 𝑑  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ↔  ( 𝑐  ↾  𝑅 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 187 | 182 186 | anbi12d | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑑  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 )  ∧  ( 𝑐  ↾  𝑅 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) | 
						
							| 188 | 180 187 | anbi12d | ⊢ ( ( 𝑘  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∧  𝑑  =  ( 𝑐  ↾  𝑅 ) )  →  ( ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 𝑘 ,  𝑑 〉  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑑  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ↔  ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∧  ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 )  ∧  ( 𝑐  ↾  𝑅 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) ) | 
						
							| 189 | 188 | spc2egv | ⊢ ( ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  V  ∧  ( 𝑐  ↾  𝑅 )  ∈  V )  →  ( ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∧  ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 )  ∧  ( 𝑐  ↾  𝑅 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) )  →  ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 𝑘 ,  𝑑 〉  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑑  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 190 | 176 178 189 | sylancl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∧  ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 )  ∧  ( 𝑐  ↾  𝑅 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) )  →  ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 𝑘 ,  𝑑 〉  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑑  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 191 | 8 175 190 | mp2and | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 𝑘 ,  𝑑 〉  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑑  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) | 
						
							| 192 |  | eliunxp | ⊢ ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 𝑘 ,  𝑑 〉  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑑  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) | 
						
							| 193 | 191 192 | sylibr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 194 | 193 3 | fmptd | ⊢ ( 𝜑  →  𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 195 | 81 | nfcri | ⊢ Ⅎ 𝑡 𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) | 
						
							| 196 | 82 195 | nfan | ⊢ Ⅎ 𝑡 ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 197 | 67 196 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) ) | 
						
							| 198 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) | 
						
							| 199 | 197 198 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) ) | 
						
							| 200 | 85 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  =  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) | 
						
							| 201 | 200 | adantlrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  =  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) | 
						
							| 202 | 201 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  =  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) | 
						
							| 203 | 3 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ↦  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) ) | 
						
							| 204 |  | opex | ⊢ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∈  V | 
						
							| 205 | 204 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∈  V ) | 
						
							| 206 | 203 205 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐷 ‘ 𝑐 )  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 207 | 206 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) ) | 
						
							| 208 | 207 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 )  =  ( ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) ‘ 𝑡 ) ) | 
						
							| 209 |  | ovex | ⊢ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  V | 
						
							| 210 | 209 178 | op2nd | ⊢ ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 )  =  ( 𝑐  ↾  𝑅 ) | 
						
							| 211 | 210 | fveq1i | ⊢ ( ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) ‘ 𝑡 )  =  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) | 
						
							| 212 | 208 211 | eqtr2di | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) | 
						
							| 213 | 212 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) | 
						
							| 214 | 213 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) | 
						
							| 215 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) ) | 
						
							| 216 |  | fveq1 | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐 ‘ 𝑍 )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 217 | 216 | oveq2d | ⊢ ( 𝑐  =  𝑒  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  =  ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ) | 
						
							| 218 |  | reseq1 | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐  ↾  𝑅 )  =  ( 𝑒  ↾  𝑅 ) ) | 
						
							| 219 | 217 218 | opeq12d | ⊢ ( 𝑐  =  𝑒  →  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) | 
						
							| 220 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 221 |  | opex | ⊢ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉  ∈  V | 
						
							| 222 | 221 | a1i | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉  ∈  V ) | 
						
							| 223 | 3 219 220 222 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐷 ‘ 𝑒 )  =  〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) | 
						
							| 224 | 223 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐷 ‘ 𝑒 )  =  〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) | 
						
							| 225 | 215 224 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐷 ‘ 𝑐 )  =  〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) | 
						
							| 226 | 225 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) ) | 
						
							| 227 | 226 | adantlrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) ) | 
						
							| 228 | 227 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) ) | 
						
							| 229 |  | ovex | ⊢ ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) )  ∈  V | 
						
							| 230 |  | vex | ⊢ 𝑒  ∈  V | 
						
							| 231 | 230 | resex | ⊢ ( 𝑒  ↾  𝑅 )  ∈  V | 
						
							| 232 | 229 231 | op2nd | ⊢ ( 2nd  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 )  =  ( 𝑒  ↾  𝑅 ) | 
						
							| 233 | 228 232 | eqtrdi | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 𝑒  ↾  𝑅 ) ) | 
						
							| 234 | 233 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 )  =  ( ( 𝑒  ↾  𝑅 ) ‘ 𝑡 ) ) | 
						
							| 235 |  | fvres | ⊢ ( 𝑡  ∈  𝑅  →  ( ( 𝑒  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 236 | 235 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑒  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 237 | 234 236 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 238 | 202 214 237 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 239 | 238 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 240 |  | elunnel1 | ⊢ ( ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ∧  ¬  𝑡  ∈  𝑅 )  →  𝑡  ∈  { 𝑍 } ) | 
						
							| 241 |  | elsni | ⊢ ( 𝑡  ∈  { 𝑍 }  →  𝑡  =  𝑍 ) | 
						
							| 242 | 240 241 | syl | ⊢ ( ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ∧  ¬  𝑡  ∈  𝑅 )  →  𝑡  =  𝑍 ) | 
						
							| 243 | 242 | adantll | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  ¬  𝑡  ∈  𝑅 )  →  𝑡  =  𝑍 ) | 
						
							| 244 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  =  𝑍 )  →  𝑡  =  𝑍 ) | 
						
							| 245 | 244 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  =  𝑍 )  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 246 | 2 | nn0cnd | ⊢ ( 𝜑  →  𝐽  ∈  ℂ ) | 
						
							| 247 | 246 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝐽  ∈  ℂ ) | 
						
							| 248 | 247 109 | nncand | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 249 | 248 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  =  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 250 | 249 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  →  ( 𝑐 ‘ 𝑍 )  =  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 251 | 250 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝑐 ‘ 𝑍 )  =  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 252 | 206 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 1st  ‘ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) ) | 
						
							| 253 | 209 178 | op1st | ⊢ ( 1st  ‘ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 254 | 252 253 | eqtr2di | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  =  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) ) ) | 
						
							| 255 | 254 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( 𝐽  −  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) | 
						
							| 256 | 255 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  →  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( 𝐽  −  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) | 
						
							| 257 | 256 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( 𝐽  −  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) | 
						
							| 258 |  | fveq2 | ⊢ ( ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 )  →  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 1st  ‘ ( 𝐷 ‘ 𝑒 ) ) ) | 
						
							| 259 | 258 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 1st  ‘ ( 𝐷 ‘ 𝑒 ) ) ) | 
						
							| 260 | 223 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 1st  ‘ ( 𝐷 ‘ 𝑒 ) )  =  ( 1st  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) ) | 
						
							| 261 | 260 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 1st  ‘ ( 𝐷 ‘ 𝑒 ) )  =  ( 1st  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 ) ) | 
						
							| 262 | 229 231 | op1st | ⊢ ( 1st  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 )  =  ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 263 | 262 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 1st  ‘ 〈 ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ,  ( 𝑒  ↾  𝑅 ) 〉 )  =  ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ) | 
						
							| 264 | 259 261 263 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) )  =  ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ) | 
						
							| 265 | 264 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐽  −  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) ) )  =  ( 𝐽  −  ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) ) ) | 
						
							| 266 | 246 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝐽  ∈  ℂ ) | 
						
							| 267 |  | fzsscn | ⊢ ( 0 ... 𝐽 )  ⊆  ℂ | 
						
							| 268 |  | eleq1w | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ↔  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) ) | 
						
							| 269 | 268 | anbi2d | ⊢ ( 𝑐  =  𝑒  →  ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ↔  ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) ) ) | 
						
							| 270 |  | feq1 | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 )  ↔  𝑒 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ) | 
						
							| 271 | 269 270 | imbi12d | ⊢ ( 𝑐  =  𝑒  →  ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) )  ↔  ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑒 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ) ) | 
						
							| 272 | 271 34 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑒 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 273 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 274 | 272 273 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑒 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 275 | 267 274 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑒 ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 276 | 266 275 | nncand | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 277 | 276 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐽  −  ( 𝐽  −  ( 𝑒 ‘ 𝑍 ) ) )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 278 | 265 277 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐽  −  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) ) )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 279 | 278 | adantlrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝐽  −  ( 1st  ‘ ( 𝐷 ‘ 𝑐 ) ) )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 280 | 251 257 279 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝑐 ‘ 𝑍 )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 281 | 280 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  =  𝑍 )  →  ( 𝑐 ‘ 𝑍 )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 282 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( 𝑒 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑍 ) ) | 
						
							| 283 | 282 | eqcomd | ⊢ ( 𝑡  =  𝑍  →  ( 𝑒 ‘ 𝑍 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 284 | 283 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  =  𝑍 )  →  ( 𝑒 ‘ 𝑍 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 285 | 245 281 284 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  =  𝑍 )  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 286 | 285 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  =  𝑍 )  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 287 | 243 286 | syldan | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  ¬  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 288 | 239 287 | pm2.61dan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 289 | 199 288 | ralrimia | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ∀ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 290 | 63 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  →  𝑐  Fn  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 291 | 290 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  𝑐  Fn  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 292 | 272 | ffnd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑒  Fn  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 293 | 292 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  →  𝑒  Fn  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 294 | 293 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  𝑒  Fn  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 295 |  | eqfnfv | ⊢ ( ( 𝑐  Fn  ( 𝑅  ∪  { 𝑍 } )  ∧  𝑒  Fn  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 𝑐  =  𝑒  ↔  ∀ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) ) | 
						
							| 296 | 291 294 295 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  ( 𝑐  =  𝑒  ↔  ∀ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) ) | 
						
							| 297 | 289 296 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  ∧  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 ) )  →  𝑐  =  𝑒 ) | 
						
							| 298 | 297 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) )  →  ( ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 )  →  𝑐  =  𝑒 ) ) | 
						
							| 299 | 298 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ∀ 𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 )  →  𝑐  =  𝑒 ) ) | 
						
							| 300 |  | dff13 | ⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  ∀ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ∀ 𝑒  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ 𝑒 )  →  𝑐  =  𝑒 ) ) ) | 
						
							| 301 | 194 299 300 | sylanbrc | ⊢ ( 𝜑  →  𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 302 |  | eliun | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 303 | 302 | biimpi | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 304 | 303 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 305 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 306 |  | nfiu1 | ⊢ Ⅎ 𝑘 ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 307 | 306 | nfcri | ⊢ Ⅎ 𝑘 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 308 | 305 307 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 309 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } | 
						
							| 310 |  | eleq1w | ⊢ ( 𝑡  =  𝑟  →  ( 𝑡  ∈  𝑅  ↔  𝑟  ∈  𝑅 ) ) | 
						
							| 311 |  | fveq2 | ⊢ ( 𝑡  =  𝑟  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ) | 
						
							| 312 | 310 311 | ifbieq1d | ⊢ ( 𝑡  =  𝑟  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 313 | 312 | cbvmptv | ⊢ ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 314 | 313 | eqeq2i | ⊢ ( 𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ↔  𝑐  =  ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) | 
						
							| 315 |  | fveq1 | ⊢ ( 𝑐  =  ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  →  ( 𝑐 ‘ 𝑡 )  =  ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) | 
						
							| 316 | 315 | sumeq2sdv | ⊢ ( 𝑐  =  ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  →  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) | 
						
							| 317 | 314 316 | sylbi | ⊢ ( 𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  →  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) | 
						
							| 318 | 317 | eqeq1d | ⊢ ( 𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  →  ( Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽  ↔  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 )  =  𝐽 ) ) | 
						
							| 319 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 0 ... 𝐽 )  ∈  V ) | 
						
							| 320 | 4 7 | ssexd | ⊢ ( 𝜑  →  ( 𝑅  ∪  { 𝑍 } )  ∈  V ) | 
						
							| 321 | 320 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑅  ∪  { 𝑍 } )  ∈  V ) | 
						
							| 322 |  | nfv | ⊢ Ⅎ 𝑡 𝑘  ∈  ( 0 ... 𝐽 ) | 
						
							| 323 |  | nfcv | ⊢ Ⅎ 𝑡 { 𝑘 } | 
						
							| 324 |  | nfcv | ⊢ Ⅎ 𝑡 𝑅 | 
						
							| 325 | 77 324 | nffv | ⊢ Ⅎ 𝑡 ( 𝐶 ‘ 𝑅 ) | 
						
							| 326 |  | nfcv | ⊢ Ⅎ 𝑡 𝑘 | 
						
							| 327 | 325 326 | nffv | ⊢ Ⅎ 𝑡 ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) | 
						
							| 328 | 323 327 | nfxp | ⊢ Ⅎ 𝑡 ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 329 | 328 | nfcri | ⊢ Ⅎ 𝑡 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 330 | 67 322 329 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 331 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  0  ∈  ℤ ) | 
						
							| 332 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  𝐽  ∈  ℤ ) | 
						
							| 333 | 332 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  𝐽  ∈  ℤ ) | 
						
							| 334 |  | iftrue | ⊢ ( 𝑡  ∈  𝑅  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 335 | 334 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 336 |  | xp2nd | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 2nd  ‘ 𝑝 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 337 | 336 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 338 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑘 ) ) | 
						
							| 339 | 338 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  =  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) ) | 
						
							| 340 |  | eqeq2 | ⊢ ( 𝑛  =  𝑘  →  ( Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 ) ) | 
						
							| 341 | 339 340 | rabeqbidv | ⊢ ( 𝑛  =  𝑘  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 342 | 160 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐶 ‘ 𝑅 )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 343 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 344 | 343 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 345 |  | ovex | ⊢ ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∈  V | 
						
							| 346 | 345 | rabex | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ∈  V | 
						
							| 347 | 346 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ∈  V ) | 
						
							| 348 | 341 342 344 347 | fvmptd4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 349 | 348 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 350 | 337 349 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 )  ∈  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 351 |  | elrabi | ⊢ ( ( 2nd  ‘ 𝑝 )  ∈  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  →  ( 2nd  ‘ 𝑝 )  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) ) | 
						
							| 352 |  | elmapi | ⊢ ( ( 2nd  ‘ 𝑝 )  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) | 
						
							| 353 | 350 351 352 | 3syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) | 
						
							| 354 | 353 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) | 
						
							| 355 | 354 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 ) ) | 
						
							| 356 | 355 | elfzelzd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ℤ ) | 
						
							| 357 | 335 356 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ℤ ) | 
						
							| 358 | 242 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  ¬  𝑡  ∈  𝑅 )  →  𝑡  =  𝑍 ) | 
						
							| 359 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  =  𝑍 )  →  𝑡  =  𝑍 ) | 
						
							| 360 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  =  𝑍 )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 361 | 359 360 | eqneltrd | ⊢ ( ( 𝜑  ∧  𝑡  =  𝑍 )  →  ¬  𝑡  ∈  𝑅 ) | 
						
							| 362 | 361 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑡  =  𝑍 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 363 | 362 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 364 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  =  𝑍 )  →  𝐽  ∈  ℤ ) | 
						
							| 365 | 364 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  𝐽  ∈  ℤ ) | 
						
							| 366 |  | xp1st | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  { 𝑘 } ) | 
						
							| 367 |  | elsni | ⊢ ( ( 1st  ‘ 𝑝 )  ∈  { 𝑘 }  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 368 | 366 367 | syl | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 369 | 368 | adantl | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 370 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℤ ) | 
						
							| 371 | 370 | adantr | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 372 | 369 371 | eqeltrd | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ℤ ) | 
						
							| 373 | 372 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ℤ ) | 
						
							| 374 | 373 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  ( 1st  ‘ 𝑝 )  ∈  ℤ ) | 
						
							| 375 | 365 374 | zsubcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ℤ ) | 
						
							| 376 | 363 375 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ℤ ) | 
						
							| 377 | 376 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  =  𝑍 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ℤ ) | 
						
							| 378 | 358 377 | syldan | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  ¬  𝑡  ∈  𝑅 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ℤ ) | 
						
							| 379 | 357 378 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ℤ ) | 
						
							| 380 | 353 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 ) ) | 
						
							| 381 |  | elfzle1 | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  →  0  ≤  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 382 | 380 381 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  0  ≤  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 383 | 334 | eqcomd | ⊢ ( 𝑡  ∈  𝑅  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 384 | 383 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 385 | 382 384 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  0  ≤  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 386 | 385 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  0  ≤  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 387 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  ¬  𝑡  ∈  𝑅 )  →  ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) | 
						
							| 388 |  | elfzle2 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ≤  𝐽 ) | 
						
							| 389 |  | elfzel2 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝐽  ∈  ℤ ) | 
						
							| 390 | 389 | zred | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝐽  ∈  ℝ ) | 
						
							| 391 | 95 | sseli | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℝ ) | 
						
							| 392 | 390 391 | subge0d | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 0  ≤  ( 𝐽  −  𝑘 )  ↔  𝑘  ≤  𝐽 ) ) | 
						
							| 393 | 388 392 | mpbird | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  0  ≤  ( 𝐽  −  𝑘 ) ) | 
						
							| 394 | 393 | adantr | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑡  =  𝑍 )  →  0  ≤  ( 𝐽  −  𝑘 ) ) | 
						
							| 395 | 394 | 3ad2antl2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  0  ≤  ( 𝐽  −  𝑘 ) ) | 
						
							| 396 | 361 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  ¬  𝑡  ∈  𝑅 ) | 
						
							| 397 | 396 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 398 | 368 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 399 | 398 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  =  ( 𝐽  −  𝑘 ) ) | 
						
							| 400 | 399 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  =  ( 𝐽  −  𝑘 ) ) | 
						
							| 401 | 397 400 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  ( 𝐽  −  𝑘 )  =  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 402 | 395 401 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  0  ≤  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 403 | 387 358 402 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  ¬  𝑡  ∈  𝑅 )  →  0  ≤  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 404 | 386 403 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  0  ≤  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 405 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  𝑘  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 406 |  | elfzelz | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ℤ ) | 
						
							| 407 | 406 | zred | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 408 | 407 | adantr | ⊢ ( ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 409 | 391 | adantl | ⊢ ( ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 410 | 390 | adantl | ⊢ ( ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝐽  ∈  ℝ ) | 
						
							| 411 |  | elfzle2 | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ≤  𝑘 ) | 
						
							| 412 | 411 | adantr | ⊢ ( ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ≤  𝑘 ) | 
						
							| 413 | 388 | adantl | ⊢ ( ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ≤  𝐽 ) | 
						
							| 414 | 408 409 410 412 413 | letrd | ⊢ ( ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑘 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ≤  𝐽 ) | 
						
							| 415 | 380 405 414 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ≤  𝐽 ) | 
						
							| 416 | 415 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ≤  𝐽 ) | 
						
							| 417 | 335 416 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  𝑡  ∈  𝑅 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ≤  𝐽 ) | 
						
							| 418 | 344 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  0  ≤  𝑘 ) | 
						
							| 419 | 390 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝐽  ∈  ℝ ) | 
						
							| 420 | 391 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 421 | 419 420 | subge02d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 0  ≤  𝑘  ↔  ( 𝐽  −  𝑘 )  ≤  𝐽 ) ) | 
						
							| 422 | 418 421 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽  −  𝑘 )  ≤  𝐽 ) | 
						
							| 423 | 422 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑡  =  𝑍 )  →  ( 𝐽  −  𝑘 )  ≤  𝐽 ) | 
						
							| 424 | 423 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  ( 𝐽  −  𝑘 )  ≤  𝐽 ) | 
						
							| 425 | 401 424 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  =  𝑍 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ≤  𝐽 ) | 
						
							| 426 | 387 358 425 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  ∧  ¬  𝑡  ∈  𝑅 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ≤  𝐽 ) | 
						
							| 427 | 417 426 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ≤  𝐽 ) | 
						
							| 428 | 331 333 379 404 427 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 429 | 330 428 | fmptd2f | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 430 | 319 321 429 | elmapdd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 431 |  | eleq1w | ⊢ ( 𝑟  =  𝑡  →  ( 𝑟  ∈  𝑅  ↔  𝑡  ∈  𝑅 ) ) | 
						
							| 432 |  | fveq2 | ⊢ ( 𝑟  =  𝑡  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 433 | 431 432 | ifbieq1d | ⊢ ( 𝑟  =  𝑡  →  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 434 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) | 
						
							| 435 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 436 | 433 434 435 379 | fvmptd4 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 )  =  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 437 | 330 436 | ralrimia | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∀ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 )  =  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 438 | 437 | sumeq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 439 |  | nfcv | ⊢ Ⅎ 𝑡 if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 440 | 60 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 441 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑍  ∈  𝑇 ) | 
						
							| 442 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 443 | 334 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 444 | 380 | elfzelzd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ℤ ) | 
						
							| 445 | 444 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 446 | 443 445 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ℂ ) | 
						
							| 447 |  | eleq1 | ⊢ ( 𝑡  =  𝑍  →  ( 𝑡  ∈  𝑅  ↔  𝑍  ∈  𝑅 ) ) | 
						
							| 448 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ) | 
						
							| 449 | 447 448 | ifbieq1d | ⊢ ( 𝑡  =  𝑍  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 450 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 451 | 450 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 452 | 451 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 453 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝐽  ∈  ℤ ) | 
						
							| 454 | 453 373 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ℤ ) | 
						
							| 455 | 454 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ℂ ) | 
						
							| 456 | 452 455 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  ∈  ℂ ) | 
						
							| 457 | 330 439 440 441 442 446 449 456 | fsumsplitsn | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( Σ 𝑡  ∈  𝑅 if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  +  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) | 
						
							| 458 | 334 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  𝑅  →  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ) | 
						
							| 459 | 330 458 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∀ 𝑡  ∈  𝑅 if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 460 | 459 | sumeq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  Σ 𝑡  ∈  𝑅 if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  Σ 𝑡  ∈  𝑅 ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 461 |  | eqidd | ⊢ ( 𝑐  =  ( 2nd  ‘ 𝑝 )  →  𝑅  =  𝑅 ) | 
						
							| 462 |  | simpl | ⊢ ( ( 𝑐  =  ( 2nd  ‘ 𝑝 )  ∧  𝑡  ∈  𝑅 )  →  𝑐  =  ( 2nd  ‘ 𝑝 ) ) | 
						
							| 463 | 462 | fveq1d | ⊢ ( ( 𝑐  =  ( 2nd  ‘ 𝑝 )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 464 | 461 463 | sumeq12rdv | ⊢ ( 𝑐  =  ( 2nd  ‘ 𝑝 )  →  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑅 ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 465 | 464 | eqeq1d | ⊢ ( 𝑐  =  ( 2nd  ‘ 𝑝 )  →  ( Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘  ↔  Σ 𝑡  ∈  𝑅 ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  𝑘 ) ) | 
						
							| 466 | 465 | elrab | ⊢ ( ( 2nd  ‘ 𝑝 )  ∈  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ↔  ( ( 2nd  ‘ 𝑝 )  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∧  Σ 𝑡  ∈  𝑅 ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  𝑘 ) ) | 
						
							| 467 | 350 466 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( 2nd  ‘ 𝑝 )  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∧  Σ 𝑡  ∈  𝑅 ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  𝑘 ) ) | 
						
							| 468 | 467 | simprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  Σ 𝑡  ∈  𝑅 ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  𝑘 ) | 
						
							| 469 | 460 468 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  Σ 𝑡  ∈  𝑅 if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  𝑘 ) | 
						
							| 470 | 442 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 471 | 470 399 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  𝑘 ) ) | 
						
							| 472 | 469 471 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( Σ 𝑡  ∈  𝑅 if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  +  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 𝑘  +  ( 𝐽  −  𝑘 ) ) ) | 
						
							| 473 | 267 | sseli | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℂ ) | 
						
							| 474 | 473 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 475 | 246 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝐽  ∈  ℂ ) | 
						
							| 476 | 474 475 | pncan3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑘  +  ( 𝐽  −  𝑘 ) )  =  𝐽 ) | 
						
							| 477 | 472 476 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( Σ 𝑡  ∈  𝑅 if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  +  if ( 𝑍  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑍 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  𝐽 ) | 
						
							| 478 | 438 457 477 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ‘ 𝑡 )  =  𝐽 ) | 
						
							| 479 | 318 430 478 | elrabd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 480 | 479 | 3exp | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) ) ) | 
						
							| 481 | 480 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) ) ) | 
						
							| 482 | 308 309 481 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) ) | 
						
							| 483 | 304 482 | mpd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 484 | 29 | eqcomd | ⊢ ( 𝜑  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  =  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 485 | 484 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  =  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 486 | 483 485 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 487 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) | 
						
							| 488 | 487 313 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  𝑐  =  ( 𝑟  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) | 
						
							| 489 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑍 )  →  𝑟  =  𝑍 ) | 
						
							| 490 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑍 )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 491 | 489 490 | eqneltrd | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑍 )  →  ¬  𝑟  ∈  𝑅 ) | 
						
							| 492 | 491 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑟  =  𝑍 )  →  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 493 | 492 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  ∧  𝑟  =  𝑍 )  →  if ( 𝑟  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑟 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 494 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 495 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  V ) | 
						
							| 496 | 488 493 494 495 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝑐 ‘ 𝑍 )  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) | 
						
							| 497 | 496 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  =  ( 𝐽  −  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 498 | 497 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  =  ( 𝐽  −  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 499 | 246 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  𝐽  ∈  ℂ ) | 
						
							| 500 |  | nfv | ⊢ Ⅎ 𝑘 ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) | 
						
							| 501 |  | simpl | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑘  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 502 | 369 501 | eqeltrd | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 503 | 502 | ex | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 504 | 503 | a1i | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 505 | 307 500 504 | rexlimd | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 506 | 303 505 | mpd | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 507 | 506 | elfzelzd | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ℤ ) | 
						
							| 508 | 507 | zcnd | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ℂ ) | 
						
							| 509 | 508 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ℂ ) | 
						
							| 510 | 499 509 | nncand | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝐽  −  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( 1st  ‘ 𝑝 ) ) | 
						
							| 511 | 498 510 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  =  ( 1st  ‘ 𝑝 ) ) | 
						
							| 512 |  | reseq1 | ⊢ ( 𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  →  ( 𝑐  ↾  𝑅 )  =  ( ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ↾  𝑅 ) ) | 
						
							| 513 | 512 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝑐  ↾  𝑅 )  =  ( ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ↾  𝑅 ) ) | 
						
							| 514 | 64 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  𝑅  ⊆  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 515 | 514 | resmptd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ↾  𝑅 )  =  ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) | 
						
							| 516 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 2nd  ‘ 𝑝 ) | 
						
							| 517 | 334 | mpteq2ia | ⊢ ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 𝑡  ∈  𝑅  ↦  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) | 
						
							| 518 | 353 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 )  =  ( 𝑡  ∈  𝑅  ↦  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ) | 
						
							| 519 | 517 518 | eqtr4id | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 2nd  ‘ 𝑝 ) ) | 
						
							| 520 | 519 | 3exp | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 2nd  ‘ 𝑝 ) ) ) ) | 
						
							| 521 | 520 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 2nd  ‘ 𝑝 ) ) ) ) | 
						
							| 522 | 308 516 521 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 2nd  ‘ 𝑝 ) ) ) | 
						
							| 523 | 304 522 | mpd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 2nd  ‘ 𝑝 ) ) | 
						
							| 524 | 523 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝑡  ∈  𝑅  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  =  ( 2nd  ‘ 𝑝 ) ) | 
						
							| 525 | 513 515 524 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  ( 𝑐  ↾  𝑅 )  =  ( 2nd  ‘ 𝑝 ) ) | 
						
							| 526 | 511 525 | opeq12d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  →  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  =  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) | 
						
							| 527 |  | opex | ⊢ 〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  ∈  V | 
						
							| 528 | 527 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  ∈  V ) | 
						
							| 529 | 3 526 486 528 | fvmptd2 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐷 ‘ ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) )  =  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) | 
						
							| 530 |  | nfv | ⊢ Ⅎ 𝑘 〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  =  𝑝 | 
						
							| 531 |  | 1st2nd2 | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑝  =  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) | 
						
							| 532 | 531 | eqcomd | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  =  𝑝 ) | 
						
							| 533 | 532 | 2a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  =  𝑝 ) ) ) | 
						
							| 534 | 308 530 533 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  =  𝑝 ) ) | 
						
							| 535 | 304 534 | mpd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  =  𝑝 ) | 
						
							| 536 | 529 535 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑝  =  ( 𝐷 ‘ ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) ) | 
						
							| 537 |  | fveq2 | ⊢ ( 𝑐  =  ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  →  ( 𝐷 ‘ 𝑐 )  =  ( 𝐷 ‘ ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) ) | 
						
							| 538 | 537 | rspceeqv | ⊢ ( ( ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) )  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  𝑝  =  ( 𝐷 ‘ ( 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } )  ↦  if ( 𝑡  ∈  𝑅 ,  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ,  ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) ) )  →  ∃ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) 𝑝  =  ( 𝐷 ‘ 𝑐 ) ) | 
						
							| 539 | 486 536 538 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∃ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) 𝑝  =  ( 𝐷 ‘ 𝑐 ) ) | 
						
							| 540 | 539 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∃ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) 𝑝  =  ( 𝐷 ‘ 𝑐 ) ) | 
						
							| 541 |  | dffo3 | ⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  ∀ 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∃ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) 𝑝  =  ( 𝐷 ‘ 𝑐 ) ) ) | 
						
							| 542 | 194 540 541 | sylanbrc | ⊢ ( 𝜑  →  𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 543 |  | df-f1o | ⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) | 
						
							| 544 | 301 542 543 | sylanbrc | ⊢ ( 𝜑  →  𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |