Step |
Hyp |
Ref |
Expression |
1 |
|
dvnprodlem2.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvnprodlem2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
dvnprodlem2.t |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
4 |
|
dvnprodlem2.h |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) |
5 |
|
dvnprodlem2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
dvnprodlem2.dvnh |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) |
7 |
|
dvnprodlem2.c |
⊢ 𝐶 = ( 𝑠 ∈ 𝒫 𝑇 ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
8 |
|
dvnprodlem2.r |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑇 ) |
9 |
|
dvnprodlem2.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑇 ∖ 𝑅 ) ) |
10 |
|
dvnprodlem2.ind |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
11 |
|
dvnprodlem2.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
12 |
|
dvnprodlem2.d |
⊢ 𝐷 = ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↦ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
13 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) |
15 |
|
ssfi |
⊢ ( ( 𝑇 ∈ Fin ∧ 𝑅 ⊆ 𝑇 ) → 𝑅 ∈ Fin ) |
16 |
3 8 15
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ Fin ) |
18 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑍 ∈ ( 𝑇 ∖ 𝑅 ) ) |
19 |
9
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝑅 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝑍 ∈ 𝑅 ) |
21 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑅 ) → 𝜑 ) |
22 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ 𝑇 ) |
23 |
21 22 4
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑅 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑅 ) → 𝑥 ∈ 𝑋 ) |
26 |
24 25
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ∈ ℂ ) |
27 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( 𝐻 ‘ 𝑡 ) = ( 𝐻 ‘ 𝑍 ) ) |
28 |
27
|
fveq1d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) |
29 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
30 |
|
eldifi |
⊢ ( 𝑍 ∈ ( 𝑇 ∖ 𝑅 ) → 𝑍 ∈ 𝑇 ) |
31 |
9 30
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) → 𝑍 ∈ 𝑇 ) |
33 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) → ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) ) |
34 |
|
eleq1 |
⊢ ( 𝑡 = 𝑍 → ( 𝑡 ∈ 𝑇 ↔ 𝑍 ∈ 𝑇 ) ) |
35 |
34
|
anbi2d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ↔ ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) ) ) |
36 |
27
|
feq1d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ↔ ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) ) |
37 |
35 36
|
imbi12d |
⊢ ( 𝑡 = 𝑍 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) ) ) |
38 |
37 4
|
vtoclg |
⊢ ( 𝑍 ∈ 𝑇 → ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) ) |
39 |
32 33 38
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) |
40 |
29 31 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
43 |
41 42
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ∈ ℂ ) |
44 |
13 14 17 18 20 26 28 43
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ( ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) · ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) |
45 |
44
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) · ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) · ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) ) |
47 |
46
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝐽 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) · ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) ‘ 𝐽 ) ) |
48 |
13 17 26
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ∈ ℂ ) |
49 |
|
elfznn0 |
⊢ ( 𝐽 ∈ ( 0 ... 𝑁 ) → 𝐽 ∈ ℕ0 ) |
50 |
11 49
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
51 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
52 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) |
53 |
|
oveq2 |
⊢ ( 𝑠 = 𝑅 → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ) |
54 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑅 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
55 |
53 54
|
syl |
⊢ ( 𝑠 = 𝑅 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
56 |
|
sumeq1 |
⊢ ( 𝑠 = 𝑅 → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) ) |
57 |
56
|
eqeq1d |
⊢ ( 𝑠 = 𝑅 → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
58 |
57
|
rabbidv |
⊢ ( 𝑠 = 𝑅 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
59 |
55 58
|
eqtrd |
⊢ ( 𝑠 = 𝑅 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
60 |
59
|
mpteq2dv |
⊢ ( 𝑠 = 𝑅 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
61 |
|
ssexg |
⊢ ( ( 𝑅 ⊆ 𝑇 ∧ 𝑇 ∈ Fin ) → 𝑅 ∈ V ) |
62 |
8 3 61
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
63 |
|
elpwg |
⊢ ( 𝑅 ∈ V → ( 𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇 ) ) |
64 |
62 63
|
syl |
⊢ ( 𝜑 → ( 𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇 ) ) |
65 |
8 64
|
mpbird |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 𝑇 ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑅 ∈ 𝒫 𝑇 ) |
67 |
|
nn0ex |
⊢ ℕ0 ∈ V |
68 |
67
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
69 |
68
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
70 |
7 60 66 69
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐶 ‘ 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
71 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 0 ... 𝑛 ) = ( 0 ... 𝑘 ) ) |
72 |
71
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
73 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑘 ) ↑m 𝑅 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
74 |
72 73
|
syl |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
75 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑘 → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 ) ) |
76 |
75
|
rabbidv |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
77 |
74 76
|
eqtrd |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
79 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℕ0 ) |
80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℕ0 ) |
81 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑘 ) ∈ Fin ) |
82 |
|
mapfi |
⊢ ( ( ( 0 ... 𝑘 ) ∈ Fin ∧ 𝑅 ∈ Fin ) → ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∈ Fin ) |
83 |
81 16 82
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∈ Fin ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∈ Fin ) |
85 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ⊆ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) |
86 |
85
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ⊆ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
87 |
84 86
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ V ) |
88 |
70 78 80 87
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
89 |
|
ssfi |
⊢ ( ( ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∈ Fin ∧ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ⊆ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ Fin ) |
90 |
83 85 89
|
sylancl |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ Fin ) |
91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ Fin ) |
92 |
88 91
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ∈ Fin ) |
93 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ∈ Fin ) |
94 |
79
|
faccld |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
95 |
94
|
nncnd |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
96 |
95
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
97 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑅 ∈ Fin ) |
98 |
97
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑅 ∈ Fin ) |
99 |
|
elfznn0 |
⊢ ( 𝑧 ∈ ( 0 ... 𝑘 ) → 𝑧 ∈ ℕ0 ) |
100 |
99
|
ssriv |
⊢ ( 0 ... 𝑘 ) ⊆ ℕ0 |
101 |
100
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 0 ... 𝑘 ) ⊆ ℕ0 ) |
102 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
103 |
88
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ↔ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) ) |
104 |
103
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ↔ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) ) |
105 |
102 104
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
106 |
85
|
sseli |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } → 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
107 |
105 106
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
108 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) → 𝑐 : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
109 |
107 108
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑐 : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
110 |
109
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑐 : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
111 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ 𝑅 ) |
112 |
110 111
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ) |
113 |
101 112
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ℕ0 ) |
114 |
113
|
faccld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℕ ) |
115 |
114
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
116 |
98 115
|
fprodcl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
117 |
114
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
118 |
98 115 117
|
fprodn0 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
119 |
96 116 118
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ∈ ℂ ) |
120 |
119
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ∈ ℂ ) |
121 |
98
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑅 ∈ Fin ) |
122 |
29
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝜑 ) |
123 |
122 22
|
sylancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ 𝑇 ) |
124 |
|
elfzuz3 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝐽 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
125 |
|
fzss2 |
⊢ ( 𝐽 ∈ ( ℤ≥ ‘ 𝑘 ) → ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝐽 ) ) |
126 |
124 125
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝐽 ) ) |
127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝐽 ) ) |
128 |
50
|
nn0zd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
129 |
5
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
130 |
|
elfzle2 |
⊢ ( 𝐽 ∈ ( 0 ... 𝑁 ) → 𝐽 ≤ 𝑁 ) |
131 |
11 130
|
syl |
⊢ ( 𝜑 → 𝐽 ≤ 𝑁 ) |
132 |
128 129 131
|
3jca |
⊢ ( 𝜑 → ( 𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁 ) ) |
133 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐽 ) ↔ ( 𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁 ) ) |
134 |
132 133
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐽 ) ) |
135 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐽 ) → ( 0 ... 𝐽 ) ⊆ ( 0 ... 𝑁 ) ) |
136 |
134 135
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝐽 ) ⊆ ( 0 ... 𝑁 ) ) |
137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 0 ... 𝐽 ) ⊆ ( 0 ... 𝑁 ) ) |
138 |
127 137
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝑁 ) ) |
139 |
138
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝑁 ) ) |
140 |
139 112
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
141 |
140
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
142 |
|
fvex |
⊢ ( 𝑐 ‘ 𝑡 ) ∈ V |
143 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑡 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ) |
144 |
143
|
3anbi3d |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑡 ) → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
145 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑡 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
146 |
145
|
feq1d |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑡 ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) |
147 |
144 146
|
imbi12d |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑡 ) → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) ) |
148 |
142 147 6
|
vtocl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
149 |
122 123 141 148
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
150 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑥 ∈ 𝑋 ) |
151 |
149 150
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
152 |
121 151
|
fprodcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
153 |
120 152
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
154 |
93 153
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
155 |
154
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) : 𝑋 ⟶ ℂ ) |
156 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
157 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 0 ∈ ℤ ) |
158 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑁 ∈ ℤ ) |
159 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℤ ) |
160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℤ ) |
161 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 0 ≤ 𝑘 ) |
162 |
161
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 0 ≤ 𝑘 ) |
163 |
160
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℝ ) |
164 |
50
|
nn0red |
⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
166 |
158
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑁 ∈ ℝ ) |
167 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ≤ 𝐽 ) |
168 |
167
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ≤ 𝐽 ) |
169 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐽 ≤ 𝑁 ) |
170 |
163 165 166 168 169
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ≤ 𝑁 ) |
171 |
157 158 160 162 170
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
172 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
173 |
156 171 172
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
174 |
173
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) : 𝑋 ⟶ ℂ ) ) |
175 |
155 174
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) |
176 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑍 ∈ 𝑇 ) |
177 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝜑 ) |
178 |
177 176 171
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ) |
179 |
34
|
3anbi2d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ) ) |
180 |
27
|
oveq2d |
⊢ ( 𝑡 = 𝑍 → ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) = ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ) |
181 |
180
|
fveq1d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) ) |
182 |
181
|
feq1d |
⊢ ( 𝑡 = 𝑍 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) |
183 |
179 182
|
imbi12d |
⊢ ( 𝑡 = 𝑍 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) ) |
184 |
|
eleq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ 𝑘 ∈ ( 0 ... 𝑁 ) ) ) |
185 |
184
|
3anbi3d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ) ) |
186 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) ) |
187 |
186
|
feq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) |
188 |
185 187
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) ) |
189 |
188 6
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) |
190 |
183 189
|
vtoclg |
⊢ ( 𝑍 ∈ 𝑇 → ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) |
191 |
176 178 190
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) |
192 |
40
|
feqmptd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) |
193 |
192
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ 𝑍 ) ) |
194 |
193
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ) |
195 |
194
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) ) |
196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) ) |
197 |
196
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) |
198 |
191 197
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) |
199 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
200 |
199
|
prodeq2ad |
⊢ ( 𝑦 = 𝑥 → ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
201 |
200
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
202 |
201
|
oveq2i |
⊢ ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
203 |
202
|
fveq1i |
⊢ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) |
204 |
203
|
mpteq2i |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
205 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) |
206 |
205
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) |
207 |
206
|
oveq2i |
⊢ ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) |
208 |
207
|
fveq1i |
⊢ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) |
209 |
208
|
mpteq2i |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
210 |
1 2 48 43 50 51 52 175 198 204 209
|
dvnmul |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) · ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) ‘ 𝐽 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) · ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) ) |
211 |
203
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
212 |
10
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
213 |
177 171 212
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
214 |
211 213
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
215 |
214
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
216 |
|
mptexg |
⊢ ( 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ∈ V ) |
217 |
2 216
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ∈ V ) |
218 |
217
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ∈ V ) |
219 |
215 218
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
220 |
219
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
221 |
220
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) |
222 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑥 ∈ 𝑋 ) |
223 |
154
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
224 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
225 |
224
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
226 |
222 223 225
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
227 |
221 226
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
228 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) ) |
229 |
228
|
cbvmptv |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) = ( 𝑗 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) ) |
230 |
229
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) = ( 𝑗 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) ) ) |
231 |
207 194
|
syl5eq |
⊢ ( 𝜑 → ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) = ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ) |
232 |
231
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) |
233 |
232
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) ) = ( 𝑗 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) ) |
234 |
230 233
|
eqtrd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) = ( 𝑗 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) ) |
235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) = ( 𝑗 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) ) |
236 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐽 − 𝑘 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ) |
237 |
236
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑗 = ( 𝐽 − 𝑘 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ) |
238 |
|
0zd |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 0 ∈ ℤ ) |
239 |
|
elfzel2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝐽 ∈ ℤ ) |
240 |
239 159
|
zsubcld |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝐽 − 𝑘 ) ∈ ℤ ) |
241 |
238 239 240
|
3jca |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ ( 𝐽 − 𝑘 ) ∈ ℤ ) ) |
242 |
239
|
zred |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝐽 ∈ ℝ ) |
243 |
79
|
nn0red |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℝ ) |
244 |
242 243
|
subge0d |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 0 ≤ ( 𝐽 − 𝑘 ) ↔ 𝑘 ≤ 𝐽 ) ) |
245 |
167 244
|
mpbird |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝐽 − 𝑘 ) ) |
246 |
242 243
|
subge02d |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 0 ≤ 𝑘 ↔ ( 𝐽 − 𝑘 ) ≤ 𝐽 ) ) |
247 |
161 246
|
mpbid |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝐽 − 𝑘 ) ≤ 𝐽 ) |
248 |
241 245 247
|
jca32 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( ( 0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ ( 𝐽 − 𝑘 ) ∈ ℤ ) ∧ ( 0 ≤ ( 𝐽 − 𝑘 ) ∧ ( 𝐽 − 𝑘 ) ≤ 𝐽 ) ) ) |
249 |
248
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ ( 𝐽 − 𝑘 ) ∈ ℤ ) ∧ ( 0 ≤ ( 𝐽 − 𝑘 ) ∧ ( 𝐽 − 𝑘 ) ≤ 𝐽 ) ) ) |
250 |
|
elfz2 |
⊢ ( ( 𝐽 − 𝑘 ) ∈ ( 0 ... 𝐽 ) ↔ ( ( 0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ ( 𝐽 − 𝑘 ) ∈ ℤ ) ∧ ( 0 ≤ ( 𝐽 − 𝑘 ) ∧ ( 𝐽 − 𝑘 ) ≤ 𝐽 ) ) ) |
251 |
249 250
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 − 𝑘 ) ∈ ( 0 ... 𝐽 ) ) |
252 |
|
fvex |
⊢ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ∈ V |
253 |
252
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ∈ V ) |
254 |
235 237 251 253
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ) |
255 |
254
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ) |
256 |
255
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) |
257 |
227 256
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) · ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) = ( Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) |
258 |
257
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐽 C 𝑘 ) · ( ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) · ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) = ( ( 𝐽 C 𝑘 ) · ( Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) |
259 |
92
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ∈ Fin ) |
260 |
|
ovex |
⊢ ( 𝐽 − 𝑘 ) ∈ V |
261 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝐽 − 𝑘 ) → ( 𝑗 ∈ ( 0 ... 𝐽 ) ↔ ( 𝐽 − 𝑘 ) ∈ ( 0 ... 𝐽 ) ) ) |
262 |
261
|
anbi2d |
⊢ ( 𝑗 = ( 𝐽 − 𝑘 ) → ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝐽 ) ) ↔ ( 𝜑 ∧ ( 𝐽 − 𝑘 ) ∈ ( 0 ... 𝐽 ) ) ) ) |
263 |
236
|
feq1d |
⊢ ( 𝑗 = ( 𝐽 − 𝑘 ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) : 𝑋 ⟶ ℂ ) ) |
264 |
262 263
|
imbi12d |
⊢ ( 𝑗 = ( 𝐽 − 𝑘 ) → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ ( 𝐽 − 𝑘 ) ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) : 𝑋 ⟶ ℂ ) ) ) |
265 |
|
eleq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↔ 𝑗 ∈ ( 0 ... 𝐽 ) ) ) |
266 |
265
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝐽 ) ) ) ) |
267 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) |
268 |
267
|
feq1d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) |
269 |
266 268
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) ) |
270 |
269 191
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) |
271 |
260 264 270
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝐽 − 𝑘 ) ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) : 𝑋 ⟶ ℂ ) |
272 |
177 251 271
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) : 𝑋 ⟶ ℂ ) |
273 |
272
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) : 𝑋 ⟶ ℂ ) |
274 |
273 222
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ∈ ℂ ) |
275 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑥 ∈ 𝑋 ) ) ) |
276 |
|
ancom |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ) |
277 |
276
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑥 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ) ) |
278 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ) ) |
279 |
278
|
bicomi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ) |
280 |
277 279
|
bitri |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑥 ∈ 𝑋 ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ) |
281 |
275 280
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ) |
282 |
281
|
anbi1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
283 |
282
|
imbi1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) ↔ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) ) |
284 |
153 283
|
mpbi |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
285 |
259 274 284
|
fsummulc1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) |
286 |
285
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐽 C 𝑘 ) · ( Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) = ( ( 𝐽 C 𝑘 ) · Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) |
287 |
177 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℕ0 ) |
288 |
287 160
|
bccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 C 𝑘 ) ∈ ℕ0 ) |
289 |
288
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 C 𝑘 ) ∈ ℂ ) |
290 |
289
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 C 𝑘 ) ∈ ℂ ) |
291 |
274
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ∈ ℂ ) |
292 |
284 291
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
293 |
259 290 292
|
fsummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐽 C 𝑘 ) · Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) |
294 |
258 286 293
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐽 C 𝑘 ) · ( ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) · ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) |
295 |
294
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) · ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝐽 ) Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) |
296 |
|
vex |
⊢ 𝑘 ∈ V |
297 |
|
vex |
⊢ 𝑐 ∈ V |
298 |
296 297
|
op1std |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( 1st ‘ 𝑝 ) = 𝑘 ) |
299 |
298
|
oveq2d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( 𝐽 C ( 1st ‘ 𝑝 ) ) = ( 𝐽 C 𝑘 ) ) |
300 |
298
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ! ‘ ( 1st ‘ 𝑝 ) ) = ( ! ‘ 𝑘 ) ) |
301 |
296 297
|
op2ndd |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( 2nd ‘ 𝑝 ) = 𝑐 ) |
302 |
301
|
fveq1d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
303 |
302
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) = ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
304 |
303
|
prodeq2ad |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) = ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
305 |
300 304
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
306 |
302
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
307 |
306
|
fveq1d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
308 |
307
|
prodeq2ad |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
309 |
305 308
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
310 |
298
|
oveq2d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( 𝐽 − ( 1st ‘ 𝑝 ) ) = ( 𝐽 − 𝑘 ) ) |
311 |
310
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ) |
312 |
311
|
fveq1d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) |
313 |
309 312
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) |
314 |
299 313
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑘 , 𝑐 〉 → ( ( 𝐽 C ( 1st ‘ 𝑝 ) ) · ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ) = ( ( 𝐽 C 𝑘 ) · ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) |
315 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 ... 𝐽 ) ∈ Fin ) |
316 |
290
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 C 𝑘 ) ∈ ℂ ) |
317 |
292
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
318 |
316 317
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝐽 C 𝑘 ) · ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) |
319 |
314 315 259 318
|
fsum2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ ( 0 ... 𝐽 ) Σ 𝑐 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) = Σ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ( ( 𝐽 C ( 1st ‘ 𝑝 ) ) · ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ) ) |
320 |
|
ovex |
⊢ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ V |
321 |
297
|
resex |
⊢ ( 𝑐 ↾ 𝑅 ) ∈ V |
322 |
320 321
|
op1std |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( 1st ‘ 𝑝 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
323 |
322
|
oveq2d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( 𝐽 C ( 1st ‘ 𝑝 ) ) = ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
324 |
322
|
fveq2d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ! ‘ ( 1st ‘ 𝑝 ) ) = ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
325 |
320 321
|
op2ndd |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( 2nd ‘ 𝑝 ) = ( 𝑐 ↾ 𝑅 ) ) |
326 |
325
|
fveq1d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
327 |
326
|
fveq2d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) = ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) |
328 |
327
|
prodeq2ad |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) = ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) |
329 |
324 328
|
oveq12d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) = ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) ) |
330 |
326
|
fveq2d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) |
331 |
330
|
fveq1d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
332 |
331
|
prodeq2ad |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
333 |
329 332
|
oveq12d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
334 |
322
|
oveq2d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( 𝐽 − ( 1st ‘ 𝑝 ) ) = ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
335 |
334
|
fveq2d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
336 |
335
|
fveq1d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) |
337 |
333 336
|
oveq12d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) |
338 |
323 337
|
oveq12d |
⊢ ( 𝑝 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 → ( ( 𝐽 C ( 1st ‘ 𝑝 ) ) · ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ) = ( ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) ) |
339 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
340 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
341 |
339 340
|
syl |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
342 |
|
sumeq1 |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) ) |
343 |
342
|
eqeq1d |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
344 |
343
|
rabbidv |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
345 |
341 344
|
eqtrd |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
346 |
345
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
347 |
31
|
snssd |
⊢ ( 𝜑 → { 𝑍 } ⊆ 𝑇 ) |
348 |
8 347
|
unssd |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ) |
349 |
3 348
|
ssexd |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ∈ V ) |
350 |
|
elpwg |
⊢ ( ( 𝑅 ∪ { 𝑍 } ) ∈ V → ( ( 𝑅 ∪ { 𝑍 } ) ∈ 𝒫 𝑇 ↔ ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ) ) |
351 |
349 350
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 ∪ { 𝑍 } ) ∈ 𝒫 𝑇 ↔ ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ) ) |
352 |
348 351
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ∈ 𝒫 𝑇 ) |
353 |
67
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
354 |
353
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
355 |
7 346 352 354
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
356 |
|
oveq2 |
⊢ ( 𝑛 = 𝐽 → ( 0 ... 𝑛 ) = ( 0 ... 𝐽 ) ) |
357 |
356
|
oveq1d |
⊢ ( 𝑛 = 𝐽 → ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) = ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
358 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) = ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
359 |
357 358
|
syl |
⊢ ( 𝑛 = 𝐽 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
360 |
|
eqeq2 |
⊢ ( 𝑛 = 𝐽 → ( Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) ) |
361 |
360
|
rabbidv |
⊢ ( 𝑛 = 𝐽 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
362 |
359 361
|
eqtrd |
⊢ ( 𝑛 = 𝐽 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
363 |
362
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝐽 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
364 |
|
ovex |
⊢ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∈ V |
365 |
364
|
rabex |
⊢ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ V |
366 |
365
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ V ) |
367 |
355 363 50 366
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
368 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐽 ) ∈ Fin ) |
369 |
|
snfi |
⊢ { 𝑍 } ∈ Fin |
370 |
369
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ Fin ) |
371 |
|
unfi |
⊢ ( ( 𝑅 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝑅 ∪ { 𝑍 } ) ∈ Fin ) |
372 |
16 370 371
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ∈ Fin ) |
373 |
|
mapfi |
⊢ ( ( ( 0 ... 𝐽 ) ∈ Fin ∧ ( 𝑅 ∪ { 𝑍 } ) ∈ Fin ) → ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∈ Fin ) |
374 |
368 372 373
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∈ Fin ) |
375 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) |
376 |
375
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
377 |
|
ssfi |
⊢ ( ( ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∈ Fin ∧ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ Fin ) |
378 |
374 376 377
|
syl2anc |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ Fin ) |
379 |
367 378
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∈ Fin ) |
380 |
379
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∈ Fin ) |
381 |
7 50 12 3 31 19 348
|
dvnprodlem1 |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
382 |
381
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
383 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
384 |
|
opex |
⊢ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ V |
385 |
384
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ V ) |
386 |
12
|
fvmpt2 |
⊢ ( ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ V ) → ( 𝐷 ‘ 𝑐 ) = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
387 |
383 385 386
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐷 ‘ 𝑐 ) = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
388 |
387
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐷 ‘ 𝑐 ) = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
389 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝐽 ∈ ℕ0 ) |
390 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
391 |
390
|
biimpi |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
392 |
391
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
393 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
394 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑝 |
395 |
|
nfiu1 |
⊢ Ⅎ 𝑘 ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
396 |
394 395
|
nfel |
⊢ Ⅎ 𝑘 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
397 |
393 396
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
398 |
|
nfv |
⊢ Ⅎ 𝑘 ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) |
399 |
|
xp1st |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ { 𝑘 } ) |
400 |
|
elsni |
⊢ ( ( 1st ‘ 𝑝 ) ∈ { 𝑘 } → ( 1st ‘ 𝑝 ) = 𝑘 ) |
401 |
399 400
|
syl |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
402 |
401
|
adantl |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
403 |
|
simpl |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
404 |
402 403
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
405 |
404
|
ex |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) |
406 |
405
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) ) |
407 |
397 398 406
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) |
408 |
392 407
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
409 |
|
elfzelz |
⊢ ( ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
410 |
408 409
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
411 |
389 410
|
bccld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 C ( 1st ‘ 𝑝 ) ) ∈ ℕ0 ) |
412 |
411
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 C ( 1st ‘ 𝑝 ) ) ∈ ℂ ) |
413 |
412
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 C ( 1st ‘ 𝑝 ) ) ∈ ℂ ) |
414 |
|
elfznn0 |
⊢ ( ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) → ( 1st ‘ 𝑝 ) ∈ ℕ0 ) |
415 |
408 414
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℕ0 ) |
416 |
415
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ! ‘ ( 1st ‘ 𝑝 ) ) ∈ ℕ ) |
417 |
416
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ! ‘ ( 1st ‘ 𝑝 ) ) ∈ ℂ ) |
418 |
417
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ! ‘ ( 1st ‘ 𝑝 ) ) ∈ ℂ ) |
419 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑅 ∈ Fin ) |
420 |
|
nfv |
⊢ Ⅎ 𝑘 ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) |
421 |
88 86
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ⊆ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
422 |
|
ovex |
⊢ ( 0 ... 𝐽 ) ∈ V |
423 |
422
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 0 ... 𝐽 ) ∈ V ) |
424 |
|
mapss |
⊢ ( ( ( 0 ... 𝐽 ) ∈ V ∧ ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝐽 ) ) → ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ⊆ ( ( 0 ... 𝐽 ) ↑m 𝑅 ) ) |
425 |
423 126 424
|
syl2anc |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ⊆ ( ( 0 ... 𝐽 ) ↑m 𝑅 ) ) |
426 |
425
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ⊆ ( ( 0 ... 𝐽 ) ↑m 𝑅 ) ) |
427 |
421 426
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ⊆ ( ( 0 ... 𝐽 ) ↑m 𝑅 ) ) |
428 |
427
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ⊆ ( ( 0 ... 𝐽 ) ↑m 𝑅 ) ) |
429 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
430 |
429
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
431 |
428 430
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝐽 ) ↑m 𝑅 ) ) |
432 |
|
elmapi |
⊢ ( ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝐽 ) ↑m 𝑅 ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) |
433 |
431 432
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) |
434 |
433
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) ) ) |
435 |
434
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) ) ) |
436 |
397 420 435
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) ) |
437 |
392 436
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) |
438 |
437
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) ) |
439 |
|
elfznn0 |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℕ0 ) |
440 |
439
|
faccld |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ∈ ℕ ) |
441 |
440
|
nncnd |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ∈ ℂ ) |
442 |
438 441
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ∈ ℂ ) |
443 |
419 442
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ∈ ℂ ) |
444 |
443
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ∈ ℂ ) |
445 |
438 440
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ∈ ℕ ) |
446 |
|
nnne0 |
⊢ ( ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ∈ ℕ → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ≠ 0 ) |
447 |
445 446
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ≠ 0 ) |
448 |
419 442 447
|
fprodn0 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ≠ 0 ) |
449 |
448
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ≠ 0 ) |
450 |
418 444 449
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) ∈ ℂ ) |
451 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑅 ∈ Fin ) |
452 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝜑 ) |
453 |
452 22
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ 𝑇 ) |
454 |
452 136
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 0 ... 𝐽 ) ⊆ ( 0 ... 𝑁 ) ) |
455 |
454 438
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
456 |
452 453 455
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ) |
457 |
|
eleq1 |
⊢ ( 𝑗 = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ) |
458 |
457
|
3anbi3d |
⊢ ( 𝑗 = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
459 |
|
fveq2 |
⊢ ( 𝑗 = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) |
460 |
459
|
feq1d |
⊢ ( 𝑗 = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) |
461 |
458 460
|
imbi12d |
⊢ ( 𝑗 = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) ) |
462 |
461 6
|
vtoclg |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) |
463 |
438 456 462
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
464 |
463
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
465 |
25
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑥 ∈ 𝑋 ) |
466 |
464 465
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
467 |
451 466
|
fprodcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
468 |
450 467
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
469 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) |
470 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝜑 ) |
471 |
404
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
472 |
|
fznn0sub2 |
⊢ ( ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) ) |
473 |
472
|
adantl |
⊢ ( ( 𝜑 ∧ ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) ) |
474 |
470 471 473
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) ) |
475 |
474
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) ) ) ) |
476 |
475
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) ) ) ) |
477 |
397 469 476
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) ) ) |
478 |
392 477
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) ) |
479 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝜑 ) |
480 |
479 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑍 ∈ 𝑇 ) |
481 |
479 136
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 0 ... 𝐽 ) ⊆ ( 0 ... 𝑁 ) ) |
482 |
481 478
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝑁 ) ) |
483 |
479 480 482
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝑁 ) ) ) |
484 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝐽 − ( 1st ‘ 𝑝 ) ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝑁 ) ) ) |
485 |
484
|
3anbi3d |
⊢ ( 𝑗 = ( 𝐽 − ( 1st ‘ 𝑝 ) ) → ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝑁 ) ) ) ) |
486 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐽 − ( 1st ‘ 𝑝 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
487 |
486
|
feq1d |
⊢ ( 𝑗 = ( 𝐽 − ( 1st ‘ 𝑝 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) ) |
488 |
485 487
|
imbi12d |
⊢ ( 𝑗 = ( 𝐽 − ( 1st ‘ 𝑝 ) ) → ( ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) ) ) |
489 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑍 ∈ 𝑇 ) |
490 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) |
491 |
34
|
3anbi2d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) ) |
492 |
180
|
fveq1d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) |
493 |
492
|
feq1d |
⊢ ( 𝑡 = 𝑍 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) |
494 |
491 493
|
imbi12d |
⊢ ( 𝑡 = 𝑍 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) ) |
495 |
494 6
|
vtoclg |
⊢ ( 𝑍 ∈ 𝑇 → ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) |
496 |
489 490 495
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) |
497 |
488 496
|
vtoclg |
⊢ ( ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝐽 ) → ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) ) |
498 |
478 483 497
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) |
499 |
498
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) |
500 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑥 ∈ 𝑋 ) |
501 |
499 500
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
502 |
468 501
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
503 |
413 502
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝐽 C ( 1st ‘ 𝑝 ) ) · ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ) ∈ ℂ ) |
504 |
338 380 382 388 503
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ( ( 𝐽 C ( 1st ‘ 𝑝 ) ) · ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) ) |
505 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝜑 ) |
506 |
367
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
507 |
383 506
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
508 |
375
|
sseli |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } → 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
509 |
507 508
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
510 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
511 |
509 510
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
512 |
|
snidg |
⊢ ( 𝑍 ∈ 𝑇 → 𝑍 ∈ { 𝑍 } ) |
513 |
31 512
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ { 𝑍 } ) |
514 |
|
elun2 |
⊢ ( 𝑍 ∈ { 𝑍 } → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
515 |
513 514
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
516 |
515
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
517 |
511 516
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) |
518 |
|
0zd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → 0 ∈ ℤ ) |
519 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℤ ) |
520 |
|
fzssz |
⊢ ( 0 ... 𝐽 ) ⊆ ℤ |
521 |
520
|
sseli |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → ( 𝑐 ‘ 𝑍 ) ∈ ℤ ) |
522 |
521
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℤ ) |
523 |
519 522
|
zsubcld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ) |
524 |
|
elfzle2 |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) |
525 |
524
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) |
526 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
527 |
522
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℝ ) |
528 |
526 527
|
subge0d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ↔ ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) ) |
529 |
525 528
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
530 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝑐 ‘ 𝑍 ) ) |
531 |
530
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → 0 ≤ ( 𝑐 ‘ 𝑍 ) ) |
532 |
526 527
|
subge02d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 0 ≤ ( 𝑐 ‘ 𝑍 ) ↔ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ≤ 𝐽 ) ) |
533 |
531 532
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ≤ 𝐽 ) |
534 |
518 519 523 529 533
|
elfzd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) |
535 |
505 517 534
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) |
536 |
|
bcval2 |
⊢ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) → ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( ( ! ‘ 𝐽 ) / ( ( ! ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) |
537 |
535 536
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( ( ! ‘ 𝐽 ) / ( ( ! ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) |
538 |
164
|
recnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
539 |
538
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℂ ) |
540 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
541 |
520 540
|
sstri |
⊢ ( 0 ... 𝐽 ) ⊆ ℂ |
542 |
541
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ... 𝐽 ) ⊆ ℂ ) |
543 |
542 517
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℂ ) |
544 |
539 543
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝑐 ‘ 𝑍 ) ) |
545 |
544
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) = ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) |
546 |
545
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ! ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) = ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
547 |
546
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ! ‘ 𝐽 ) / ( ( ! ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) = ( ( ! ‘ 𝐽 ) / ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) |
548 |
50
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝐽 ) ∈ ℕ ) |
549 |
548
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝐽 ) ∈ ℂ ) |
550 |
549
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ 𝐽 ) ∈ ℂ ) |
551 |
|
elfznn0 |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → ( 𝑐 ‘ 𝑍 ) ∈ ℕ0 ) |
552 |
517 551
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℕ0 ) |
553 |
552
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ∈ ℕ ) |
554 |
553
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ∈ ℂ ) |
555 |
|
elfznn0 |
⊢ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℕ0 ) |
556 |
535 555
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℕ0 ) |
557 |
556
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ∈ ℕ ) |
558 |
557
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ∈ ℂ ) |
559 |
553
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ≠ 0 ) |
560 |
557
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ≠ 0 ) |
561 |
550 554 558 559 560
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) / ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) = ( ( ! ‘ 𝐽 ) / ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) |
562 |
561
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ! ‘ 𝐽 ) / ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) = ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) / ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
563 |
537 547 562
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) / ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
564 |
563
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) / ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
565 |
|
fvres |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
566 |
565
|
fveq2d |
⊢ ( 𝑡 ∈ 𝑅 → ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) = ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
567 |
566
|
prodeq2i |
⊢ ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) = ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) |
568 |
567
|
oveq2i |
⊢ ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) = ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
569 |
565
|
fveq2d |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
570 |
569
|
fveq1d |
⊢ ( 𝑡 ∈ 𝑅 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
571 |
570
|
prodeq2i |
⊢ ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) |
572 |
568 571
|
oveq12i |
⊢ ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
573 |
572
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
574 |
573
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
575 |
558
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ∈ ℂ ) |
576 |
505 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑅 ∈ Fin ) |
577 |
79
|
ssriv |
⊢ ( 0 ... 𝐽 ) ⊆ ℕ0 |
578 |
577
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 0 ... 𝐽 ) ⊆ ℕ0 ) |
579 |
511
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
580 |
|
elun1 |
⊢ ( 𝑡 ∈ 𝑅 → 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
581 |
580
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
582 |
579 581
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) ) |
583 |
578 582
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ℕ0 ) |
584 |
583
|
faccld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℕ ) |
585 |
584
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
586 |
576 585
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
587 |
586
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
588 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑅 ∈ Fin ) |
589 |
505
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝜑 ) |
590 |
505 22
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ 𝑇 ) |
591 |
589 136
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 0 ... 𝐽 ) ⊆ ( 0 ... 𝑁 ) ) |
592 |
591 582
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
593 |
589 590 592 148
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
594 |
593
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
595 |
25
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑥 ∈ 𝑋 ) |
596 |
594 595
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
597 |
588 596
|
fprodcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
598 |
576 584
|
fprodnncl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℕ ) |
599 |
|
nnne0 |
⊢ ( ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℕ → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
600 |
598 599
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
601 |
600
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
602 |
575 587 597 601
|
div32d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
603 |
574 602
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
604 |
544
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ) |
605 |
604
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) |
606 |
605
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) |
607 |
603 606
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) |
608 |
597 587 601
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ∈ ℂ ) |
609 |
505 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ 𝑇 ) |
610 |
505 136
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ... 𝐽 ) ⊆ ( 0 ... 𝑁 ) ) |
611 |
610 517
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝑁 ) ) |
612 |
505 609 611
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝑁 ) ) ) |
613 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑍 ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝑁 ) ) ) |
614 |
613
|
3anbi3d |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑍 ) → ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
615 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑍 ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ) |
616 |
615
|
feq1d |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑍 ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) ) |
617 |
614 616
|
imbi12d |
⊢ ( 𝑗 = ( 𝑐 ‘ 𝑍 ) → ( ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) ) ) |
618 |
617 496
|
vtoclg |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → ( ( 𝜑 ∧ 𝑍 ∈ 𝑇 ∧ ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) ) |
619 |
517 612 618
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) |
620 |
619
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) |
621 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑥 ∈ 𝑋 ) |
622 |
620 621
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ∈ ℂ ) |
623 |
575 608 622
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) = ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) |
624 |
607 623
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) = ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) |
625 |
564 624
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) = ( ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) / ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) · ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) ) |
626 |
549
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ 𝐽 ) ∈ ℂ ) |
627 |
554
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ∈ ℂ ) |
628 |
559
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ≠ 0 ) |
629 |
626 627 628
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) ∈ ℂ ) |
630 |
608 622
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
631 |
560
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ≠ 0 ) |
632 |
629 575 630 631
|
dmmcand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) / ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) · ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) = ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) |
633 |
597 622 587 601
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) |
634 |
633
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) = ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
635 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
636 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) |
637 |
609
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ 𝑇 ) |
638 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ¬ 𝑍 ∈ 𝑅 ) |
639 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑍 ) ) |
640 |
180 639
|
fveq12d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ) |
641 |
640
|
fveq1d |
⊢ ( 𝑡 = 𝑍 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) |
642 |
635 636 588 637 638 596 641 622
|
fprodsplitsn |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) |
643 |
642
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) = ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
644 |
643
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
645 |
634 644
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) = ( ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
646 |
645
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) = ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) · ( ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
647 |
588 369 371
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑅 ∪ { 𝑍 } ) ∈ Fin ) |
648 |
505
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝜑 ) |
649 |
348
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝑡 ∈ 𝑇 ) |
650 |
649
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝑡 ∈ 𝑇 ) |
651 |
511 610
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝑁 ) ) |
652 |
651
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝑁 ) ) |
653 |
648 650 652 148
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
654 |
653
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) |
655 |
621
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝑥 ∈ 𝑋 ) |
656 |
654 655
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
657 |
647 656
|
fprodcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ∈ ℂ ) |
658 |
626 627 657 587 628 601
|
divmuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) · ( ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) = ( ( ( ! ‘ 𝐽 ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) / ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) |
659 |
554 586
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) · ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) ) |
660 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
661 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) |
662 |
505 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ¬ 𝑍 ∈ 𝑅 ) |
663 |
639
|
fveq2d |
⊢ ( 𝑡 = 𝑍 → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) |
664 |
660 661 576 609 662 585 663 554
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ( ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) · ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) ) |
665 |
664
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) · ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) = ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
666 |
659 665
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
667 |
666
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) / ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) = ( ( ( ! ‘ 𝐽 ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
668 |
667
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) / ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) = ( ( ( ! ‘ 𝐽 ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
669 |
505 372
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑅 ∪ { 𝑍 } ) ∈ Fin ) |
670 |
577
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 0 ... 𝐽 ) ⊆ ℕ0 ) |
671 |
511
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) ) |
672 |
670 671
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 ‘ 𝑡 ) ∈ ℕ0 ) |
673 |
672
|
faccld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℕ ) |
674 |
673
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
675 |
669 674
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
676 |
675
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ∈ ℂ ) |
677 |
673
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
678 |
669 674 677
|
fprodn0 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
679 |
678
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ≠ 0 ) |
680 |
626 657 676 679
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
681 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
682 |
668 680 681
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) / ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) · ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) = ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
683 |
646 658 682
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( ( ! ‘ 𝐽 ) / ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) = ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
684 |
625 632 683
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) = ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
685 |
684
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐽 C ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) · ( ( ( ( ! ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
686 |
504 685
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ( ( 𝐽 C ( 1st ‘ 𝑝 ) ) · ( ( ( ( ! ‘ ( 1st ‘ 𝑝 ) ) / ∏ 𝑡 ∈ 𝑅 ( ! ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑅 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) · ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
687 |
295 319 686
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) · ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
688 |
687
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 ) · ( ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 ) · ( ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ↦ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽 − 𝑘 ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
689 |
47 210 688
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝐽 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 ) / ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |