| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnprodlem2.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvnprodlem2.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | dvnprodlem2.t | ⊢ ( 𝜑  →  𝑇  ∈  Fin ) | 
						
							| 4 |  | dvnprodlem2.h | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) | 
						
							| 5 |  | dvnprodlem2.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | dvnprodlem2.dvnh | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) | 
						
							| 7 |  | dvnprodlem2.c | ⊢ 𝐶  =  ( 𝑠  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 8 |  | dvnprodlem2.r | ⊢ ( 𝜑  →  𝑅  ⊆  𝑇 ) | 
						
							| 9 |  | dvnprodlem2.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑇  ∖  𝑅 ) ) | 
						
							| 10 |  | dvnprodlem2.ind | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 11 |  | dvnprodlem2.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 12 |  | dvnprodlem2.d | ⊢ 𝐷  =  ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ↦  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑥  ∈  𝑋 ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑡 ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) | 
						
							| 15 |  | ssfi | ⊢ ( ( 𝑇  ∈  Fin  ∧  𝑅  ⊆  𝑇 )  →  𝑅  ∈  Fin ) | 
						
							| 16 | 3 8 15 | syl2anc | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑅  ∈  Fin ) | 
						
							| 18 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑍  ∈  ( 𝑇  ∖  𝑅 ) ) | 
						
							| 19 | 9 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑅 )  →  𝜑 ) | 
						
							| 22 | 8 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  𝑇 ) | 
						
							| 23 | 21 22 4 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑅 )  →  ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑡  ∈  𝑅 )  →  ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑡  ∈  𝑅 )  →  𝑥  ∈  𝑋 ) | 
						
							| 26 | 24 25 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( 𝐻 ‘ 𝑡 )  =  ( 𝐻 ‘ 𝑍 ) ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) | 
						
							| 29 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 30 |  | eldifi | ⊢ ( 𝑍  ∈  ( 𝑇  ∖  𝑅 )  →  𝑍  ∈  𝑇 ) | 
						
							| 31 | 9 30 | syl | ⊢ ( 𝜑  →  𝑍  ∈  𝑇 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑍  ∈  𝑇 )  →  𝑍  ∈  𝑇 ) | 
						
							| 33 |  | id | ⊢ ( ( 𝜑  ∧  𝑍  ∈  𝑇 )  →  ( 𝜑  ∧  𝑍  ∈  𝑇 ) ) | 
						
							| 34 |  | eleq1 | ⊢ ( 𝑡  =  𝑍  →  ( 𝑡  ∈  𝑇  ↔  𝑍  ∈  𝑇 ) ) | 
						
							| 35 | 34 | anbi2d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ↔  ( 𝜑  ∧  𝑍  ∈  𝑇 ) ) ) | 
						
							| 36 | 27 | feq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ  ↔  ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 37 | 35 36 | imbi12d | ⊢ ( 𝑡  =  𝑍  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑍  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 38 | 37 4 | vtoclg | ⊢ ( 𝑍  ∈  𝑇  →  ( ( 𝜑  ∧  𝑍  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 39 | 32 33 38 | sylc | ⊢ ( ( 𝜑  ∧  𝑍  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) | 
						
							| 40 | 29 31 39 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐻 ‘ 𝑍 ) : 𝑋 ⟶ ℂ ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 43 | 41 42 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 44 | 13 14 17 18 20 26 28 43 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ( ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  ·  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) | 
						
							| 45 | 44 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  ·  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  ·  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 47 | 46 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝐽 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  ·  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) ‘ 𝐽 ) ) | 
						
							| 48 | 13 17 26 | fprodclf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 49 |  | elfznn0 | ⊢ ( 𝐽  ∈  ( 0 ... 𝑁 )  →  𝐽  ∈  ℕ0 ) | 
						
							| 50 | 11 49 | syl | ⊢ ( 𝜑  →  𝐽  ∈  ℕ0 ) | 
						
							| 51 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 52 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑠  =  𝑅  →  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑅 ) ) | 
						
							| 54 |  | rabeq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 55 | 53 54 | syl | ⊢ ( 𝑠  =  𝑅  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 56 |  | sumeq1 | ⊢ ( 𝑠  =  𝑅  →  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 57 | 56 | eqeq1d | ⊢ ( 𝑠  =  𝑅  →  ( Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 58 | 57 | rabbidv | ⊢ ( 𝑠  =  𝑅  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 59 | 55 58 | eqtrd | ⊢ ( 𝑠  =  𝑅  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 60 | 59 | mpteq2dv | ⊢ ( 𝑠  =  𝑅  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 61 |  | ssexg | ⊢ ( ( 𝑅  ⊆  𝑇  ∧  𝑇  ∈  Fin )  →  𝑅  ∈  V ) | 
						
							| 62 | 8 3 61 | syl2anc | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 63 |  | elpwg | ⊢ ( 𝑅  ∈  V  →  ( 𝑅  ∈  𝒫  𝑇  ↔  𝑅  ⊆  𝑇 ) ) | 
						
							| 64 | 62 63 | syl | ⊢ ( 𝜑  →  ( 𝑅  ∈  𝒫  𝑇  ↔  𝑅  ⊆  𝑇 ) ) | 
						
							| 65 | 8 64 | mpbird | ⊢ ( 𝜑  →  𝑅  ∈  𝒫  𝑇 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑅  ∈  𝒫  𝑇 ) | 
						
							| 67 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 68 | 67 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V | 
						
							| 69 | 68 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V ) | 
						
							| 70 | 7 60 66 69 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐶 ‘ 𝑅 )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑘 ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  =  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) ) | 
						
							| 73 |  | rabeq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  𝑅 )  =  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝑛  =  𝑘  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 75 |  | eqeq2 | ⊢ ( 𝑛  =  𝑘  →  ( Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 ) ) | 
						
							| 76 | 75 | rabbidv | ⊢ ( 𝑛  =  𝑘  →  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 77 | 74 76 | eqtrd | ⊢ ( 𝑛  =  𝑘  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑛  =  𝑘 )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 79 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 81 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑘 )  ∈  Fin ) | 
						
							| 82 |  | mapfi | ⊢ ( ( ( 0 ... 𝑘 )  ∈  Fin  ∧  𝑅  ∈  Fin )  →  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∈  Fin ) | 
						
							| 83 | 81 16 82 | syl2anc | ⊢ ( 𝜑  →  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∈  Fin ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∈  Fin ) | 
						
							| 85 |  | ssrab2 | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ⊆  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) | 
						
							| 86 | 85 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ⊆  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) ) | 
						
							| 87 | 84 86 | ssexd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ∈  V ) | 
						
							| 88 | 70 78 80 87 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  =  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 89 |  | ssfi | ⊢ ( ( ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∈  Fin  ∧  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ⊆  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ∈  Fin ) | 
						
							| 90 | 83 85 89 | sylancl | ⊢ ( 𝜑  →  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ∈  Fin ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  ∈  Fin ) | 
						
							| 92 | 88 91 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ∈  Fin ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ∈  Fin ) | 
						
							| 94 | 79 | faccld | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 95 | 94 | nncnd | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 96 | 95 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 97 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑅  ∈  Fin ) | 
						
							| 98 | 97 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑅  ∈  Fin ) | 
						
							| 99 |  | elfznn0 | ⊢ ( 𝑧  ∈  ( 0 ... 𝑘 )  →  𝑧  ∈  ℕ0 ) | 
						
							| 100 | 99 | ssriv | ⊢ ( 0 ... 𝑘 )  ⊆  ℕ0 | 
						
							| 101 | 100 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 0 ... 𝑘 )  ⊆  ℕ0 ) | 
						
							| 102 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 103 | 88 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ↔  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ↔  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) ) | 
						
							| 105 | 102 104 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 106 | 85 | sseli | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ∣  Σ 𝑡  ∈  𝑅 ( 𝑐 ‘ 𝑡 )  =  𝑘 }  →  𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) ) | 
						
							| 107 | 105 106 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) ) | 
						
							| 108 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  →  𝑐 : 𝑅 ⟶ ( 0 ... 𝑘 ) ) | 
						
							| 109 | 107 108 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑐 : 𝑅 ⟶ ( 0 ... 𝑘 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑐 : 𝑅 ⟶ ( 0 ... 𝑘 ) ) | 
						
							| 111 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  𝑅 ) | 
						
							| 112 | 110 111 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑘 ) ) | 
						
							| 113 | 101 112 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 114 | 113 | faccld | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℕ ) | 
						
							| 115 | 114 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 116 | 98 115 | fprodcl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 117 | 114 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 118 | 98 115 117 | fprodn0 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 119 | 96 116 118 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ∈  ℂ ) | 
						
							| 120 | 119 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ∈  ℂ ) | 
						
							| 121 | 98 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  𝑅  ∈  Fin ) | 
						
							| 122 | 29 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  𝜑 ) | 
						
							| 123 | 122 22 | sylancom | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  𝑇 ) | 
						
							| 124 |  | elfzuz3 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝐽  ∈  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 125 |  | fzss2 | ⊢ ( 𝐽  ∈  ( ℤ≥ ‘ 𝑘 )  →  ( 0 ... 𝑘 )  ⊆  ( 0 ... 𝐽 ) ) | 
						
							| 126 | 124 125 | syl | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 0 ... 𝑘 )  ⊆  ( 0 ... 𝐽 ) ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 0 ... 𝑘 )  ⊆  ( 0 ... 𝐽 ) ) | 
						
							| 128 | 50 | nn0zd | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 129 | 5 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 130 |  | elfzle2 | ⊢ ( 𝐽  ∈  ( 0 ... 𝑁 )  →  𝐽  ≤  𝑁 ) | 
						
							| 131 | 11 130 | syl | ⊢ ( 𝜑  →  𝐽  ≤  𝑁 ) | 
						
							| 132 | 128 129 131 | 3jca | ⊢ ( 𝜑  →  ( 𝐽  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐽  ≤  𝑁 ) ) | 
						
							| 133 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝐽 )  ↔  ( 𝐽  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐽  ≤  𝑁 ) ) | 
						
							| 134 | 132 133 | sylibr | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 135 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝐽 )  →  ( 0 ... 𝐽 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 136 | 134 135 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝐽 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 137 | 136 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 0 ... 𝐽 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 138 | 127 137 | sstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 0 ... 𝑘 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 139 | 138 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 0 ... 𝑘 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 140 | 139 112 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 141 | 140 | adantllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 142 |  | fvex | ⊢ ( 𝑐 ‘ 𝑡 )  ∈  V | 
						
							| 143 |  | eleq1 | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑡 )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 144 | 143 | 3anbi3d | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑡 )  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 145 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑡 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 146 | 145 | feq1d | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑡 )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 147 | 144 146 | imbi12d | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑡 )  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 148 | 142 147 6 | vtocl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 149 | 122 123 141 148 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 150 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑥  ∈  𝑋 ) | 
						
							| 151 | 149 150 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 152 | 121 151 | fprodcl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 153 | 120 152 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 154 | 93 153 | fsumcl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 155 | 154 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 156 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 157 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  0  ∈  ℤ ) | 
						
							| 158 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 159 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℤ ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 161 |  | elfzle1 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  0  ≤  𝑘 ) | 
						
							| 162 | 161 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  0  ≤  𝑘 ) | 
						
							| 163 | 160 | zred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 164 | 50 | nn0red | ⊢ ( 𝜑  →  𝐽  ∈  ℝ ) | 
						
							| 165 | 164 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝐽  ∈  ℝ ) | 
						
							| 166 | 158 | zred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 167 |  | elfzle2 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ≤  𝐽 ) | 
						
							| 168 | 167 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ≤  𝐽 ) | 
						
							| 169 | 131 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝐽  ≤  𝑁 ) | 
						
							| 170 | 163 165 166 168 169 | letrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ≤  𝑁 ) | 
						
							| 171 | 157 158 160 162 170 | elfzd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 172 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 173 | 156 171 172 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 174 | 173 | feq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ  ↔  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 175 | 155 174 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) | 
						
							| 176 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑍  ∈  𝑇 ) | 
						
							| 177 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝜑 ) | 
						
							| 178 | 177 176 171 | 3jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 179 | 34 | 3anbi2d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 180 | 27 | oveq2d | ⊢ ( 𝑡  =  𝑍  →  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) )  =  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ) | 
						
							| 181 | 180 | fveq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) ) | 
						
							| 182 | 181 | feq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 183 | 179 182 | imbi12d | ⊢ ( 𝑡  =  𝑍  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 184 |  | eleq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 185 | 184 | 3anbi3d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 186 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) ) | 
						
							| 187 | 186 | feq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 188 | 185 187 | imbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 189 | 188 6 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) | 
						
							| 190 | 183 189 | vtoclg | ⊢ ( 𝑍  ∈  𝑇  →  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 191 | 176 178 190 | sylc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) | 
						
							| 192 | 40 | feqmptd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) | 
						
							| 193 | 192 | eqcomd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) )  =  ( 𝐻 ‘ 𝑍 ) ) | 
						
							| 194 | 193 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ) | 
						
							| 195 | 194 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) ) | 
						
							| 196 | 195 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) ) | 
						
							| 197 | 196 | feq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 198 | 191 197 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) | 
						
							| 199 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 )  =  ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 200 | 199 | prodeq2ad | ⊢ ( 𝑦  =  𝑥  →  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 )  =  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 201 | 200 | cbvmptv | ⊢ ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 202 | 201 | oveq2i | ⊢ ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) | 
						
							| 203 | 202 | fveq1i | ⊢ ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) | 
						
							| 204 | 203 | mpteq2i | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) )  =  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) | 
						
							| 205 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 )  =  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) | 
						
							| 206 | 205 | cbvmptv | ⊢ ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) | 
						
							| 207 | 206 | oveq2i | ⊢ ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) | 
						
							| 208 | 207 | fveq1i | ⊢ ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) | 
						
							| 209 | 208 | mpteq2i | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) )  =  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) | 
						
							| 210 | 1 2 48 43 50 51 52 175 198 204 209 | dvnmul | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ( ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  ·  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑥 ) ) ) ) ‘ 𝐽 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑘  ∈  ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 211 | 203 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) | 
						
							| 212 | 10 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 213 | 177 171 212 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 214 | 211 213 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 215 | 214 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) )  =  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 216 |  | mptexg | ⊢ ( 𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 217 | 2 216 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 218 | 217 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 219 | 215 218 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 220 | 219 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 221 | 220 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) | 
						
							| 222 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 223 | 154 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 224 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 225 | 224 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ )  →  ( ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 226 | 222 223 225 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 227 | 221 226 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 228 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) ) | 
						
							| 229 | 228 | cbvmptv | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) )  =  ( 𝑗  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) ) | 
						
							| 230 | 229 | a1i | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) )  =  ( 𝑗  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 231 | 207 194 | eqtrid | ⊢ ( 𝜑  →  ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) )  =  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ) | 
						
							| 232 | 231 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) | 
						
							| 233 | 232 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑗 ) )  =  ( 𝑗  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) ) | 
						
							| 234 | 230 233 | eqtrd | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) )  =  ( 𝑗  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) ) | 
						
							| 235 | 234 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) )  =  ( 𝑗  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) ) | 
						
							| 236 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝐽  −  𝑘 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ) | 
						
							| 237 | 236 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑗  =  ( 𝐽  −  𝑘 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ) | 
						
							| 238 |  | 0zd | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  0  ∈  ℤ ) | 
						
							| 239 |  | elfzel2 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝐽  ∈  ℤ ) | 
						
							| 240 | 239 159 | zsubcld | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝐽  −  𝑘 )  ∈  ℤ ) | 
						
							| 241 | 238 239 240 | 3jca | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 0  ∈  ℤ  ∧  𝐽  ∈  ℤ  ∧  ( 𝐽  −  𝑘 )  ∈  ℤ ) ) | 
						
							| 242 | 239 | zred | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝐽  ∈  ℝ ) | 
						
							| 243 | 79 | nn0red | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℝ ) | 
						
							| 244 | 242 243 | subge0d | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 0  ≤  ( 𝐽  −  𝑘 )  ↔  𝑘  ≤  𝐽 ) ) | 
						
							| 245 | 167 244 | mpbird | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  0  ≤  ( 𝐽  −  𝑘 ) ) | 
						
							| 246 | 242 243 | subge02d | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 0  ≤  𝑘  ↔  ( 𝐽  −  𝑘 )  ≤  𝐽 ) ) | 
						
							| 247 | 161 246 | mpbid | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝐽  −  𝑘 )  ≤  𝐽 ) | 
						
							| 248 | 241 245 247 | jca32 | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( ( 0  ∈  ℤ  ∧  𝐽  ∈  ℤ  ∧  ( 𝐽  −  𝑘 )  ∈  ℤ )  ∧  ( 0  ≤  ( 𝐽  −  𝑘 )  ∧  ( 𝐽  −  𝑘 )  ≤  𝐽 ) ) ) | 
						
							| 249 | 248 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 0  ∈  ℤ  ∧  𝐽  ∈  ℤ  ∧  ( 𝐽  −  𝑘 )  ∈  ℤ )  ∧  ( 0  ≤  ( 𝐽  −  𝑘 )  ∧  ( 𝐽  −  𝑘 )  ≤  𝐽 ) ) ) | 
						
							| 250 |  | elfz2 | ⊢ ( ( 𝐽  −  𝑘 )  ∈  ( 0 ... 𝐽 )  ↔  ( ( 0  ∈  ℤ  ∧  𝐽  ∈  ℤ  ∧  ( 𝐽  −  𝑘 )  ∈  ℤ )  ∧  ( 0  ≤  ( 𝐽  −  𝑘 )  ∧  ( 𝐽  −  𝑘 )  ≤  𝐽 ) ) ) | 
						
							| 251 | 249 250 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽  −  𝑘 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 252 |  | fvex | ⊢ ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) )  ∈  V | 
						
							| 253 | 252 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) )  ∈  V ) | 
						
							| 254 | 235 237 251 253 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ) | 
						
							| 255 | 254 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ) | 
						
							| 256 | 255 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) | 
						
							| 257 | 227 256 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) )  =  ( Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) | 
						
							| 258 | 257 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  =  ( ( 𝐽 C 𝑘 )  ·  ( Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 259 | 92 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ∈  Fin ) | 
						
							| 260 |  | ovex | ⊢ ( 𝐽  −  𝑘 )  ∈  V | 
						
							| 261 |  | eleq1 | ⊢ ( 𝑗  =  ( 𝐽  −  𝑘 )  →  ( 𝑗  ∈  ( 0 ... 𝐽 )  ↔  ( 𝐽  −  𝑘 )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 262 | 261 | anbi2d | ⊢ ( 𝑗  =  ( 𝐽  −  𝑘 )  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝐽 ) )  ↔  ( 𝜑  ∧  ( 𝐽  −  𝑘 )  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 263 | 236 | feq1d | ⊢ ( 𝑗  =  ( 𝐽  −  𝑘 )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 264 | 262 263 | imbi12d | ⊢ ( 𝑗  =  ( 𝐽  −  𝑘 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  ( 𝐽  −  𝑘 )  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 265 |  | eleq1 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  ↔  𝑗  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 266 | 265 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ↔  ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 267 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) | 
						
							| 268 | 267 | feq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 269 | 266 268 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 270 | 269 191 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) | 
						
							| 271 | 260 264 270 | vtocl | ⊢ ( ( 𝜑  ∧  ( 𝐽  −  𝑘 )  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 272 | 177 251 271 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 273 | 272 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 274 | 273 222 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 275 |  | anass | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ↔  ( 𝜑  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑥  ∈  𝑋 ) ) ) | 
						
							| 276 |  | ancom | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑥  ∈  𝑋 )  ↔  ( 𝑥  ∈  𝑋  ∧  𝑘  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 277 | 276 | anbi2i | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑥  ∈  𝑋 ) )  ↔  ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑘  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 278 |  | anass | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ↔  ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑘  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 279 | 278 | bicomi | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑘  ∈  ( 0 ... 𝐽 ) ) )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 280 | 277 279 | bitri | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑥  ∈  𝑋 ) )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 281 | 275 280 | bitri | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 282 | 281 | anbi1i | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 283 | 282 | imbi1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ )  ↔  ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ ) ) | 
						
							| 284 | 153 283 | mpbi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 285 | 259 274 284 | fsummulc1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) | 
						
							| 286 | 285 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐽 C 𝑘 )  ·  ( Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  =  ( ( 𝐽 C 𝑘 )  ·  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 287 | 177 50 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝐽  ∈  ℕ0 ) | 
						
							| 288 | 287 160 | bccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽 C 𝑘 )  ∈  ℕ0 ) | 
						
							| 289 | 288 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽 C 𝑘 )  ∈  ℂ ) | 
						
							| 290 | 289 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽 C 𝑘 )  ∈  ℂ ) | 
						
							| 291 | 274 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 292 | 284 291 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 293 | 259 290 292 | fsummulc2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐽 C 𝑘 )  ·  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 294 | 258 286 293 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 295 | 294 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑘  ∈  ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝐽 ) Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 296 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 297 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 298 | 296 297 | op1std | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 299 | 298 | oveq2d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( 𝐽 C ( 1st  ‘ 𝑝 ) )  =  ( 𝐽 C 𝑘 ) ) | 
						
							| 300 | 298 | fveq2d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ! ‘ ( 1st  ‘ 𝑝 ) )  =  ( ! ‘ 𝑘 ) ) | 
						
							| 301 | 296 297 | op2ndd | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( 2nd  ‘ 𝑝 )  =  𝑐 ) | 
						
							| 302 | 301 | fveq1d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 303 | 302 | fveq2d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  =  ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 304 | 303 | prodeq2ad | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 305 | 300 304 | oveq12d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 306 | 302 | fveq2d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 307 | 306 | fveq1d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 308 | 307 | prodeq2ad | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 309 | 305 308 | oveq12d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 310 | 298 | oveq2d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  =  ( 𝐽  −  𝑘 ) ) | 
						
							| 311 | 310 | fveq2d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ) | 
						
							| 312 | 311 | fveq1d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) | 
						
							| 313 | 309 312 | oveq12d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) )  =  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) | 
						
							| 314 | 299 313 | oveq12d | ⊢ ( 𝑝  =  〈 𝑘 ,  𝑐 〉  →  ( ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ·  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) )  =  ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 315 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 0 ... 𝐽 )  ∈  Fin ) | 
						
							| 316 | 290 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽 C 𝑘 )  ∈  ℂ ) | 
						
							| 317 | 292 | anasss | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 318 | 316 317 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 319 | 314 315 259 318 | fsum2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑘  ∈  ( 0 ... 𝐽 ) Σ 𝑐  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  =  Σ 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ( ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ·  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 320 |  | ovex | ⊢ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  V | 
						
							| 321 | 297 | resex | ⊢ ( 𝑐  ↾  𝑅 )  ∈  V | 
						
							| 322 | 320 321 | op1std | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( 1st  ‘ 𝑝 )  =  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 323 | 322 | oveq2d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( 𝐽 C ( 1st  ‘ 𝑝 ) )  =  ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 324 | 322 | fveq2d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ! ‘ ( 1st  ‘ 𝑝 ) )  =  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 325 | 320 321 | op2ndd | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( 2nd  ‘ 𝑝 )  =  ( 𝑐  ↾  𝑅 ) ) | 
						
							| 326 | 325 | fveq1d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  =  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) | 
						
							| 327 | 326 | fveq2d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  =  ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ) | 
						
							| 328 | 327 | prodeq2ad | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ) | 
						
							| 329 | 324 328 | oveq12d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  =  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ) ) | 
						
							| 330 | 326 | fveq2d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ) | 
						
							| 331 | 330 | fveq1d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 332 | 331 | prodeq2ad | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 333 | 329 332 | oveq12d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 334 | 322 | oveq2d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  =  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 335 | 334 | fveq2d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 336 | 335 | fveq1d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) | 
						
							| 337 | 333 336 | oveq12d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) )  =  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) | 
						
							| 338 | 323 337 | oveq12d | ⊢ ( 𝑝  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  →  ( ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ·  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) )  =  ( ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 339 |  | oveq2 | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 340 |  | rabeq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 341 | 339 340 | syl | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 342 |  | sumeq1 | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 343 | 342 | eqeq1d | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  ( Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 344 | 343 | rabbidv | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 345 | 341 344 | eqtrd | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 346 | 345 | mpteq2dv | ⊢ ( 𝑠  =  ( 𝑅  ∪  { 𝑍 } )  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 347 | 31 | snssd | ⊢ ( 𝜑  →  { 𝑍 }  ⊆  𝑇 ) | 
						
							| 348 | 8 347 | unssd | ⊢ ( 𝜑  →  ( 𝑅  ∪  { 𝑍 } )  ⊆  𝑇 ) | 
						
							| 349 | 3 348 | ssexd | ⊢ ( 𝜑  →  ( 𝑅  ∪  { 𝑍 } )  ∈  V ) | 
						
							| 350 |  | elpwg | ⊢ ( ( 𝑅  ∪  { 𝑍 } )  ∈  V  →  ( ( 𝑅  ∪  { 𝑍 } )  ∈  𝒫  𝑇  ↔  ( 𝑅  ∪  { 𝑍 } )  ⊆  𝑇 ) ) | 
						
							| 351 | 349 350 | syl | ⊢ ( 𝜑  →  ( ( 𝑅  ∪  { 𝑍 } )  ∈  𝒫  𝑇  ↔  ( 𝑅  ∪  { 𝑍 } )  ⊆  𝑇 ) ) | 
						
							| 352 | 348 351 | mpbird | ⊢ ( 𝜑  →  ( 𝑅  ∪  { 𝑍 } )  ∈  𝒫  𝑇 ) | 
						
							| 353 | 67 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V | 
						
							| 354 | 353 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V ) | 
						
							| 355 | 7 346 352 354 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 356 |  | oveq2 | ⊢ ( 𝑛  =  𝐽  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝐽 ) ) | 
						
							| 357 | 356 | oveq1d | ⊢ ( 𝑛  =  𝐽  →  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  =  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 358 |  | rabeq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  =  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 359 | 357 358 | syl | ⊢ ( 𝑛  =  𝐽  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 360 |  | eqeq2 | ⊢ ( 𝑛  =  𝐽  →  ( Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 ) ) | 
						
							| 361 | 360 | rabbidv | ⊢ ( 𝑛  =  𝐽  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 362 | 359 361 | eqtrd | ⊢ ( 𝑛  =  𝐽  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 363 | 362 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  =  𝐽 )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 364 |  | ovex | ⊢ ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∈  V | 
						
							| 365 | 364 | rabex | ⊢ { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ∈  V | 
						
							| 366 | 365 | a1i | ⊢ ( 𝜑  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ∈  V ) | 
						
							| 367 | 355 363 50 366 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 368 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝐽 )  ∈  Fin ) | 
						
							| 369 |  | snfi | ⊢ { 𝑍 }  ∈  Fin | 
						
							| 370 | 369 | a1i | ⊢ ( 𝜑  →  { 𝑍 }  ∈  Fin ) | 
						
							| 371 |  | unfi | ⊢ ( ( 𝑅  ∈  Fin  ∧  { 𝑍 }  ∈  Fin )  →  ( 𝑅  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 372 | 16 370 371 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 373 |  | mapfi | ⊢ ( ( ( 0 ... 𝐽 )  ∈  Fin  ∧  ( 𝑅  ∪  { 𝑍 } )  ∈  Fin )  →  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∈  Fin ) | 
						
							| 374 | 368 372 373 | syl2anc | ⊢ ( 𝜑  →  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∈  Fin ) | 
						
							| 375 |  | ssrab2 | ⊢ { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ⊆  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 376 | 375 | a1i | ⊢ ( 𝜑  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ⊆  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 377 |  | ssfi | ⊢ ( ( ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∈  Fin  ∧  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ⊆  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) )  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ∈  Fin ) | 
						
							| 378 | 374 376 377 | syl2anc | ⊢ ( 𝜑  →  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  ∈  Fin ) | 
						
							| 379 | 367 378 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∈  Fin ) | 
						
							| 380 | 379 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∈  Fin ) | 
						
							| 381 | 7 50 12 3 31 19 348 | dvnprodlem1 | ⊢ ( 𝜑  →  𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 382 | 381 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐷 : ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 383 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 384 |  | opex | ⊢ 〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∈  V | 
						
							| 385 | 384 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∈  V ) | 
						
							| 386 | 12 | fvmpt2 | ⊢ ( ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  ∧  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉  ∈  V )  →  ( 𝐷 ‘ 𝑐 )  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 387 | 383 385 386 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐷 ‘ 𝑐 )  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 388 | 387 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐷 ‘ 𝑐 )  =  〈 ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ,  ( 𝑐  ↾  𝑅 ) 〉 ) | 
						
							| 389 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝐽  ∈  ℕ0 ) | 
						
							| 390 |  | eliun | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  ↔  ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 391 | 390 | biimpi | ⊢ ( 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 392 | 391 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 393 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 394 |  | nfcv | ⊢ Ⅎ 𝑘 𝑝 | 
						
							| 395 |  | nfiu1 | ⊢ Ⅎ 𝑘 ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 396 | 394 395 | nfel | ⊢ Ⅎ 𝑘 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 397 | 393 396 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 398 |  | nfv | ⊢ Ⅎ 𝑘 ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) | 
						
							| 399 |  | xp1st | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  { 𝑘 } ) | 
						
							| 400 |  | elsni | ⊢ ( ( 1st  ‘ 𝑝 )  ∈  { 𝑘 }  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 401 | 399 400 | syl | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 402 | 401 | adantl | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  =  𝑘 ) | 
						
							| 403 |  | simpl | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑘  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 404 | 402 403 | eqeltrd | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 405 | 404 | ex | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 406 | 405 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 407 | 397 398 406 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 408 | 392 407 | mpd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 409 |  | elfzelz | ⊢ ( ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 )  →  ( 1st  ‘ 𝑝 )  ∈  ℤ ) | 
						
							| 410 | 408 409 | syl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ℤ ) | 
						
							| 411 | 389 410 | bccld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ∈  ℕ0 ) | 
						
							| 412 | 411 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ∈  ℂ ) | 
						
							| 413 | 412 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ∈  ℂ ) | 
						
							| 414 |  | elfznn0 | ⊢ ( ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 )  →  ( 1st  ‘ 𝑝 )  ∈  ℕ0 ) | 
						
							| 415 | 408 414 | syl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ℕ0 ) | 
						
							| 416 | 415 | faccld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ! ‘ ( 1st  ‘ 𝑝 ) )  ∈  ℕ ) | 
						
							| 417 | 416 | nncnd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ! ‘ ( 1st  ‘ 𝑝 ) )  ∈  ℂ ) | 
						
							| 418 | 417 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ! ‘ ( 1st  ‘ 𝑝 ) )  ∈  ℂ ) | 
						
							| 419 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 420 |  | nfv | ⊢ Ⅎ 𝑘 ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) | 
						
							| 421 | 88 86 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ⊆  ( ( 0 ... 𝑘 )  ↑m  𝑅 ) ) | 
						
							| 422 |  | ovex | ⊢ ( 0 ... 𝐽 )  ∈  V | 
						
							| 423 | 422 | a1i | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 0 ... 𝐽 )  ∈  V ) | 
						
							| 424 |  | mapss | ⊢ ( ( ( 0 ... 𝐽 )  ∈  V  ∧  ( 0 ... 𝑘 )  ⊆  ( 0 ... 𝐽 ) )  →  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ⊆  ( ( 0 ... 𝐽 )  ↑m  𝑅 ) ) | 
						
							| 425 | 423 126 424 | syl2anc | ⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ⊆  ( ( 0 ... 𝐽 )  ↑m  𝑅 ) ) | 
						
							| 426 | 425 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 0 ... 𝑘 )  ↑m  𝑅 )  ⊆  ( ( 0 ... 𝐽 )  ↑m  𝑅 ) ) | 
						
							| 427 | 421 426 | sstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ⊆  ( ( 0 ... 𝐽 )  ↑m  𝑅 ) ) | 
						
							| 428 | 427 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 )  ⊆  ( ( 0 ... 𝐽 )  ↑m  𝑅 ) ) | 
						
							| 429 |  | xp2nd | ⊢ ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 2nd  ‘ 𝑝 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 430 | 429 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 )  ∈  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) | 
						
							| 431 | 428 430 | sseldd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 )  ∈  ( ( 0 ... 𝐽 )  ↑m  𝑅 ) ) | 
						
							| 432 |  | elmapi | ⊢ ( ( 2nd  ‘ 𝑝 )  ∈  ( ( 0 ... 𝐽 )  ↑m  𝑅 )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 433 | 431 432 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 434 | 433 | 3exp | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) ) ) | 
						
							| 435 | 434 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) ) ) | 
						
							| 436 | 397 420 435 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) ) | 
						
							| 437 | 392 436 | mpd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 2nd  ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 438 | 437 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 439 |  | elfznn0 | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝐽 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 440 | 439 | faccld | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝐽 )  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ∈  ℕ ) | 
						
							| 441 | 440 | nncnd | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝐽 )  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 442 | 438 441 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 443 | 419 442 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 444 | 443 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 445 | 438 440 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ∈  ℕ ) | 
						
							| 446 |  | nnne0 | ⊢ ( ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ∈  ℕ  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 447 | 445 446 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 448 | 419 442 447 | fprodn0 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 449 | 448 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 450 | 418 444 449 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ∈  ℂ ) | 
						
							| 451 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 452 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  𝜑 ) | 
						
							| 453 | 452 22 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  𝑇 ) | 
						
							| 454 | 452 136 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( 0 ... 𝐽 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 455 | 454 438 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 456 | 452 453 455 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 457 |  | eleq1 | ⊢ ( 𝑗  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 458 | 457 | 3anbi3d | ⊢ ( 𝑗  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 459 |  | fveq2 | ⊢ ( 𝑗  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ) | 
						
							| 460 | 459 | feq1d | ⊢ ( 𝑗  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 461 | 458 460 | imbi12d | ⊢ ( 𝑗  =  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 462 | 461 6 | vtoclg | ⊢ ( ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝐽 )  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 463 | 438 456 462 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 464 | 463 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 465 | 25 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  𝑥  ∈  𝑋 ) | 
						
							| 466 | 464 465 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 467 | 451 466 | fprodcl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 468 | 450 467 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 469 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) | 
						
							| 470 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝜑 ) | 
						
							| 471 | 404 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 472 |  | fznn0sub2 | ⊢ ( ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 473 | 472 | adantl | ⊢ ( ( 𝜑  ∧  ( 1st  ‘ 𝑝 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 474 | 470 471 473 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 )  ∧  𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 475 | 474 | 3exp | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 476 | 475 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝐽 )  →  ( 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) ) ) ) | 
						
							| 477 | 397 469 476 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝐽 ) 𝑝  ∈  ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) ) ) | 
						
							| 478 | 392 477 | mpd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 479 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝜑 ) | 
						
							| 480 | 479 31 | syl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑍  ∈  𝑇 ) | 
						
							| 481 | 479 136 | syl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 0 ... 𝐽 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 482 | 481 478 | sseldd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 483 | 479 480 482 | 3jca | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 484 |  | eleq1 | ⊢ ( 𝑗  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 485 | 484 | 3anbi3d | ⊢ ( 𝑗  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  →  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 486 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ) | 
						
							| 487 | 486 | feq1d | ⊢ ( 𝑗  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 488 | 485 487 | imbi12d | ⊢ ( 𝑗  =  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  →  ( ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 489 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑍  ∈  𝑇 ) | 
						
							| 490 |  | id | ⊢ ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 491 | 34 | 3anbi2d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 492 | 180 | fveq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) ) | 
						
							| 493 | 492 | feq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 494 | 491 493 | imbi12d | ⊢ ( 𝑡  =  𝑍  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 495 | 494 6 | vtoclg | ⊢ ( 𝑍  ∈  𝑇  →  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 496 | 489 490 495 | sylc | ⊢ ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) | 
						
							| 497 | 488 496 | vtoclg | ⊢ ( ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝐽 )  →  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝐽  −  ( 1st  ‘ 𝑝 ) )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 498 | 478 483 497 | sylc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 499 | 498 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 500 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 501 | 499 500 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 502 | 468 501 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 503 | 413 502 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) )  →  ( ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ·  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 504 | 338 380 382 388 503 | fsumf1o | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ( ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ·  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 505 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝜑 ) | 
						
							| 506 | 367 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 )  =  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 507 | 383 506 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 } ) | 
						
							| 508 | 375 | sseli | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  ∣  Σ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( 𝑐 ‘ 𝑡 )  =  𝐽 }  →  𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 509 | 507 508 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) ) ) | 
						
							| 510 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝐽 )  ↑m  ( 𝑅  ∪  { 𝑍 } ) )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 511 | 509 510 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 512 |  | snidg | ⊢ ( 𝑍  ∈  𝑇  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 513 | 31 512 | syl | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 514 |  | elun2 | ⊢ ( 𝑍  ∈  { 𝑍 }  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 515 | 513 514 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 516 | 515 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑍  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 517 | 511 516 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 518 |  | 0zd | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  0  ∈  ℤ ) | 
						
							| 519 | 128 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 520 |  | fzssz | ⊢ ( 0 ... 𝐽 )  ⊆  ℤ | 
						
							| 521 | 520 | sseli | ⊢ ( ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℤ ) | 
						
							| 522 | 521 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℤ ) | 
						
							| 523 | 519 522 | zsubcld | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℤ ) | 
						
							| 524 |  | elfzle2 | ⊢ ( ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 )  →  ( 𝑐 ‘ 𝑍 )  ≤  𝐽 ) | 
						
							| 525 | 524 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ≤  𝐽 ) | 
						
							| 526 | 164 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  𝐽  ∈  ℝ ) | 
						
							| 527 | 522 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 528 | 526 527 | subge0d | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 0  ≤  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ↔  ( 𝑐 ‘ 𝑍 )  ≤  𝐽 ) ) | 
						
							| 529 | 525 528 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  0  ≤  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 530 |  | elfzle1 | ⊢ ( ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 )  →  0  ≤  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 531 | 530 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  0  ≤  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 532 | 526 527 | subge02d | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 0  ≤  ( 𝑐 ‘ 𝑍 )  ↔  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ≤  𝐽 ) ) | 
						
							| 533 | 531 532 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ≤  𝐽 ) | 
						
							| 534 | 518 519 523 529 533 | elfzd | ⊢ ( ( 𝜑  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 535 | 505 517 534 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 536 |  | bcval2 | ⊢ ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 )  →  ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( ( ! ‘ 𝐽 )  /  ( ( ! ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) | 
						
							| 537 | 535 536 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( ( ! ‘ 𝐽 )  /  ( ( ! ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) | 
						
							| 538 | 164 | recnd | ⊢ ( 𝜑  →  𝐽  ∈  ℂ ) | 
						
							| 539 | 538 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝐽  ∈  ℂ ) | 
						
							| 540 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 541 | 520 540 | sstri | ⊢ ( 0 ... 𝐽 )  ⊆  ℂ | 
						
							| 542 | 541 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 0 ... 𝐽 )  ⊆  ℂ ) | 
						
							| 543 | 542 517 | sseldd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 544 | 539 543 | nncand | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 545 | 544 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  =  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 546 | 545 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ! ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  =  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 547 | 546 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ! ‘ 𝐽 )  /  ( ( ! ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) )  =  ( ( ! ‘ 𝐽 )  /  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) | 
						
							| 548 | 50 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝐽 )  ∈  ℕ ) | 
						
							| 549 | 548 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 550 | 549 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 551 |  | elfznn0 | ⊢ ( ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℕ0 ) | 
						
							| 552 | 517 551 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ℕ0 ) | 
						
							| 553 | 552 | faccld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ∈  ℕ ) | 
						
							| 554 | 553 | nncnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ∈  ℂ ) | 
						
							| 555 |  | elfznn0 | ⊢ ( ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ( 0 ... 𝐽 )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℕ0 ) | 
						
							| 556 | 535 555 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) )  ∈  ℕ0 ) | 
						
							| 557 | 556 | faccld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ∈  ℕ ) | 
						
							| 558 | 557 | nncnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ∈  ℂ ) | 
						
							| 559 | 553 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ≠  0 ) | 
						
							| 560 | 557 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ≠  0 ) | 
						
							| 561 | 550 554 558 559 560 | divdiv1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  /  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  =  ( ( ! ‘ 𝐽 )  /  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) | 
						
							| 562 | 561 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ! ‘ 𝐽 )  /  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  /  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 563 | 537 547 562 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  /  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 564 | 563 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  /  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ) | 
						
							| 565 |  | fvres | ⊢ ( 𝑡  ∈  𝑅  →  ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 566 | 565 | fveq2d | ⊢ ( 𝑡  ∈  𝑅  →  ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) )  =  ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 567 | 566 | prodeq2i | ⊢ ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 568 | 567 | oveq2i | ⊢ ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  =  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 569 | 565 | fveq2d | ⊢ ( 𝑡  ∈  𝑅  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 570 | 569 | fveq1d | ⊢ ( 𝑡  ∈  𝑅  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 571 | 570 | prodeq2i | ⊢ ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) | 
						
							| 572 | 568 571 | oveq12i | ⊢ ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 573 | 572 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 574 | 573 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 575 | 558 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ∈  ℂ ) | 
						
							| 576 | 505 16 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑅  ∈  Fin ) | 
						
							| 577 | 79 | ssriv | ⊢ ( 0 ... 𝐽 )  ⊆  ℕ0 | 
						
							| 578 | 577 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 0 ... 𝐽 )  ⊆  ℕ0 ) | 
						
							| 579 | 511 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) | 
						
							| 580 |  | elun1 | ⊢ ( 𝑡  ∈  𝑅  →  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 581 | 580 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ) | 
						
							| 582 | 579 581 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 583 | 578 582 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 584 | 583 | faccld | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℕ ) | 
						
							| 585 | 584 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 586 | 576 585 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 587 | 586 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 588 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑅  ∈  Fin ) | 
						
							| 589 | 505 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝜑 ) | 
						
							| 590 | 505 22 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑡  ∈  𝑇 ) | 
						
							| 591 | 589 136 | syl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 0 ... 𝐽 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 592 | 591 582 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 593 | 589 590 592 148 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 594 | 593 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 595 | 25 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  𝑥  ∈  𝑋 ) | 
						
							| 596 | 594 595 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  𝑅 )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 597 | 588 596 | fprodcl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 598 | 576 584 | fprodnncl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℕ ) | 
						
							| 599 |  | nnne0 | ⊢ ( ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℕ  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 600 | 598 599 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 601 | 600 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 602 | 575 587 597 601 | div32d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) | 
						
							| 603 | 574 602 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) | 
						
							| 604 | 544 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 605 | 604 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) | 
						
							| 606 | 605 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) | 
						
							| 607 | 603 606 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) | 
						
							| 608 | 597 587 601 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ∈  ℂ ) | 
						
							| 609 | 505 31 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑍  ∈  𝑇 ) | 
						
							| 610 | 505 136 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 0 ... 𝐽 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 611 | 610 517 | sseldd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 612 | 505 609 611 | 3jca | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 613 |  | eleq1 | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑍 )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 614 | 613 | 3anbi3d | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑍 )  →  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 615 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑍 )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 616 | 615 | feq1d | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑍 )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 617 | 614 616 | imbi12d | ⊢ ( 𝑗  =  ( 𝑐 ‘ 𝑍 )  →  ( ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 618 | 617 496 | vtoclg | ⊢ ( ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝐽 )  →  ( ( 𝜑  ∧  𝑍  ∈  𝑇  ∧  ( 𝑐 ‘ 𝑍 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 619 | 517 612 618 | sylc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 620 | 619 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 621 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 622 | 620 621 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 623 | 575 608 622 | mulassd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  =  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 624 | 607 623 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) )  =  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 625 | 564 624 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) )  =  ( ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  /  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  ·  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 626 | 549 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 627 | 554 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ∈  ℂ ) | 
						
							| 628 | 559 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ≠  0 ) | 
						
							| 629 | 626 627 628 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  ∈  ℂ ) | 
						
							| 630 | 608 622 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 631 | 560 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ≠  0 ) | 
						
							| 632 | 629 575 630 631 | dmmcand | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  /  ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) )  ·  ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 633 | 597 622 587 601 | div23d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) | 
						
							| 634 | 633 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  =  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 635 |  | nfv | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 636 |  | nfcv | ⊢ Ⅎ 𝑡 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) | 
						
							| 637 | 609 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑍  ∈  𝑇 ) | 
						
							| 638 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 639 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 640 | 180 639 | fveq12d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 641 | 640 | fveq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) | 
						
							| 642 | 635 636 588 637 638 596 641 622 | fprodsplitsn | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) ) | 
						
							| 643 | 642 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  =  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 644 | 643 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 645 | 634 644 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) )  =  ( ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 646 | 645 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) | 
						
							| 647 | 588 369 371 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑅  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 648 | 505 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  𝜑 ) | 
						
							| 649 | 348 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 650 | 649 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 651 | 511 610 | fssd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  𝑐 : ( 𝑅  ∪  { 𝑍 } ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 652 | 651 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 653 | 648 650 652 148 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 654 | 653 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 655 | 621 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 656 | 654 655 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 657 | 647 656 | fprodcl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 658 | 626 627 657 587 628 601 | divmuldivd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) )  =  ( ( ( ! ‘ 𝐽 )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  /  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) ) | 
						
							| 659 | 554 586 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ·  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 660 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ) | 
						
							| 661 |  | nfcv | ⊢ Ⅎ 𝑡 ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) | 
						
							| 662 | 505 19 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ¬  𝑍  ∈  𝑅 ) | 
						
							| 663 | 639 | fveq2d | ⊢ ( 𝑡  =  𝑍  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) | 
						
							| 664 | 660 661 576 609 662 585 663 554 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ( ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ·  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) ) ) | 
						
							| 665 | 664 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ·  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  =  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 666 | 659 665 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 667 | 666 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  /  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) )  =  ( ( ( ! ‘ 𝐽 )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 668 | 667 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  /  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) )  =  ( ( ( ! ‘ 𝐽 )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 669 | 505 372 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( 𝑅  ∪  { 𝑍 } )  ∈  Fin ) | 
						
							| 670 | 577 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 0 ... 𝐽 )  ⊆  ℕ0 ) | 
						
							| 671 | 511 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 𝑐 ‘ 𝑡 )  ∈  ( 0 ... 𝐽 ) ) | 
						
							| 672 | 670 671 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( 𝑐 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 673 | 672 | faccld | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℕ ) | 
						
							| 674 | 673 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 675 | 669 674 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 676 | 675 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 677 | 673 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  ∧  𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 678 | 669 674 677 | fprodn0 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 679 | 678 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  ≠  0 ) | 
						
							| 680 | 626 657 676 679 | div23d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 681 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 682 | 668 680 681 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  /  ( ( ! ‘ ( 𝑐 ‘ 𝑍 ) )  ·  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 683 | 646 658 682 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( ( ! ‘ 𝐽 )  /  ( ! ‘ ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝑐 ‘ 𝑍 ) ) ‘ 𝑥 ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 684 | 625 632 683 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) )  →  ( ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) )  =  ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 685 | 684 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐽 C ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  ·  ( ( ( ( ! ‘ ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 𝑐  ↾  𝑅 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 𝐽  −  ( 𝑐 ‘ 𝑍 ) ) ) ) ‘ 𝑥 ) ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 686 | 504 685 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑝  ∈  ∪  𝑘  ∈  ( 0 ... 𝐽 ) ( { 𝑘 }  ×  ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ( ( 𝐽 C ( 1st  ‘ 𝑝 ) )  ·  ( ( ( ( ! ‘ ( 1st  ‘ 𝑝 ) )  /  ∏ 𝑡  ∈  𝑅 ( ! ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑅 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( ( 2nd  ‘ 𝑝 ) ‘ 𝑡 ) ) ‘ 𝑥 ) )  ·  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑍 ) ) ‘ ( 𝐽  −  ( 1st  ‘ 𝑝 ) ) ) ‘ 𝑥 ) ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 687 | 295 319 686 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑘  ∈  ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 688 | 687 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑘  ∈  ( 0 ... 𝐽 ) ( ( 𝐽 C 𝑘 )  ·  ( ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑅 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ 𝑘 ) ‘ 𝑥 )  ·  ( ( ( 𝑘  ∈  ( 0 ... 𝐽 )  ↦  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ( ( 𝐻 ‘ 𝑍 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) ‘ ( 𝐽  −  𝑘 ) ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 689 | 47 210 688 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝐽 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑅  ∪  { 𝑍 } ) ) ‘ 𝐽 ) ( ( ( ! ‘ 𝐽 )  /  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑅  ∪  { 𝑍 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |