| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnprodlem3.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvnprodlem3.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | dvnprodlem3.t | ⊢ ( 𝜑  →  𝑇  ∈  Fin ) | 
						
							| 4 |  | dvnprodlem3.h | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) | 
						
							| 5 |  | dvnprodlem3.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | dvnprodlem3.dvnh | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) | 
						
							| 7 |  | dvnprodlem3.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 8 |  | dvnprodlem3.d | ⊢ 𝐷  =  ( 𝑠  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 9 |  | dvnprodlem3.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 10 |  | prodeq1 | ⊢ ( 𝑠  =  ∅  →  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 11 | 10 | mpteq2dv | ⊢ ( 𝑠  =  ∅  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑠  =  ∅  →  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) | 
						
							| 13 | 12 | fveq1d | ⊢ ( 𝑠  =  ∅  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑠  =  ∅  →  ( 𝐷 ‘ 𝑠 )  =  ( 𝐷 ‘ ∅ ) ) | 
						
							| 15 | 14 | fveq1d | ⊢ ( 𝑠  =  ∅  →  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ) | 
						
							| 16 | 15 | sumeq1d | ⊢ ( 𝑠  =  ∅  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 17 |  | prodeq1 | ⊢ ( 𝑠  =  ∅  →  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑠  =  ∅  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 19 |  | prodeq1 | ⊢ ( 𝑠  =  ∅  →  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( 𝑠  =  ∅  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 21 | 20 | sumeq2sdv | ⊢ ( 𝑠  =  ∅  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 22 | 16 21 | eqtrd | ⊢ ( 𝑠  =  ∅  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 23 | 22 | mpteq2dv | ⊢ ( 𝑠  =  ∅  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 24 | 13 23 | eqeq12d | ⊢ ( 𝑠  =  ∅  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( 𝑠  =  ∅  →  ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 26 |  | prodeq1 | ⊢ ( 𝑠  =  𝑟  →  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 27 | 26 | mpteq2dv | ⊢ ( 𝑠  =  𝑟  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑠  =  𝑟  →  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 28 | fveq1d | ⊢ ( 𝑠  =  𝑟  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑠  =  𝑟  →  ( 𝐷 ‘ 𝑠 )  =  ( 𝐷 ‘ 𝑟 ) ) | 
						
							| 31 | 30 | fveq1d | ⊢ ( 𝑠  =  𝑟  →  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ) | 
						
							| 32 | 31 | sumeq1d | ⊢ ( 𝑠  =  𝑟  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 33 |  | prodeq1 | ⊢ ( 𝑠  =  𝑟  →  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝑠  =  𝑟  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 35 |  | prodeq1 | ⊢ ( 𝑠  =  𝑟  →  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 36 | 34 35 | oveq12d | ⊢ ( 𝑠  =  𝑟  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 37 | 36 | sumeq2sdv | ⊢ ( 𝑠  =  𝑟  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 38 | 32 37 | eqtrd | ⊢ ( 𝑠  =  𝑟  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 39 | 38 | mpteq2dv | ⊢ ( 𝑠  =  𝑟  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 29 39 | eqeq12d | ⊢ ( 𝑠  =  𝑟  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 41 | 40 | ralbidv | ⊢ ( 𝑠  =  𝑟  →  ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 42 |  | prodeq1 | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 43 | 42 | mpteq2dv | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) | 
						
							| 45 | 44 | fveq1d | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( 𝐷 ‘ 𝑠 )  =  ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ) | 
						
							| 47 | 46 | fveq1d | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ) | 
						
							| 48 | 47 | sumeq1d | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 49 |  | prodeq1 | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 51 |  | prodeq1 | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 52 | 50 51 | oveq12d | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | sumeq2sdv | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 54 | 48 53 | eqtrd | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 55 | 54 | mpteq2dv | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 56 | 45 55 | eqeq12d | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 57 | 56 | ralbidv | ⊢ ( 𝑠  =  ( 𝑟  ∪  { 𝑧 } )  →  ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 58 |  | prodeq1 | ⊢ ( 𝑠  =  𝑇  →  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 59 | 58 | mpteq2dv | ⊢ ( 𝑠  =  𝑇  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) | 
						
							| 60 | 7 | a1i | ⊢ ( 𝑠  =  𝑇  →  𝐹  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) | 
						
							| 61 | 60 | eqcomd | ⊢ ( 𝑠  =  𝑇  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  𝐹 ) | 
						
							| 62 | 59 61 | eqtrd | ⊢ ( 𝑠  =  𝑇  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  𝐹 ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑠  =  𝑇  →  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  𝐹 ) ) | 
						
							| 64 | 63 | fveq1d | ⊢ ( 𝑠  =  𝑇  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑠  =  𝑇  →  ( 𝐷 ‘ 𝑠 )  =  ( 𝐷 ‘ 𝑇 ) ) | 
						
							| 66 | 65 | fveq1d | ⊢ ( 𝑠  =  𝑇  →  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ) | 
						
							| 67 | 66 | sumeq1d | ⊢ ( 𝑠  =  𝑇  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 68 |  | prodeq1 | ⊢ ( 𝑠  =  𝑇  →  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( 𝑠  =  𝑇  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 70 |  | prodeq1 | ⊢ ( 𝑠  =  𝑇  →  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 71 | 69 70 | oveq12d | ⊢ ( 𝑠  =  𝑇  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 72 | 71 | sumeq2sdv | ⊢ ( 𝑠  =  𝑇  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 73 | 67 72 | eqtrd | ⊢ ( 𝑠  =  𝑇  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 74 | 73 | mpteq2dv | ⊢ ( 𝑠  =  𝑇  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 75 | 64 74 | eqeq12d | ⊢ ( 𝑠  =  𝑇  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 76 | 75 | ralbidv | ⊢ ( 𝑠  =  𝑇  →  ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑠 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 77 |  | prod0 | ⊢ ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  1 | 
						
							| 78 | 77 | mpteq2i | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  1 ) | 
						
							| 79 | 78 | oveq2i | ⊢ ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) | 
						
							| 80 | 79 | a1i | ⊢ ( 𝑘  =  0  →  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ) | 
						
							| 81 |  | id | ⊢ ( 𝑘  =  0  →  𝑘  =  0 ) | 
						
							| 82 | 80 81 | fveq12d | ⊢ ( 𝑘  =  0  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 0 ) ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 0 ) ) | 
						
							| 84 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 85 | 1 84 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 86 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  1  ∈  ℂ ) | 
						
							| 87 | 86 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  1 ) : 𝑋 ⟶ ℂ ) | 
						
							| 88 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 89 | 88 | rgenw | ⊢ ∀ 𝑥  ∈  𝑋 1  ∈  ℝ | 
						
							| 90 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝑋 1  ∈  ℝ  →  dom  ( 𝑥  ∈  𝑋  ↦  1 )  =  𝑋 ) | 
						
							| 91 | 89 90 | ax-mp | ⊢ dom  ( 𝑥  ∈  𝑋  ↦  1 )  =  𝑋 | 
						
							| 92 | 91 | a1i | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝑋  ↦  1 )  =  𝑋 ) | 
						
							| 93 | 92 | feq2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  1 ) : dom  ( 𝑥  ∈  𝑋  ↦  1 ) ⟶ ℂ  ↔  ( 𝑥  ∈  𝑋  ↦  1 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 94 | 87 93 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  1 ) : dom  ( 𝑥  ∈  𝑋  ↦  1 ) ⟶ ℂ ) | 
						
							| 95 |  | restsspw | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ⊆  𝒫  𝑆 | 
						
							| 96 | 95 2 | sselid | ⊢ ( 𝜑  →  𝑋  ∈  𝒫  𝑆 ) | 
						
							| 97 |  | elpwi | ⊢ ( 𝑋  ∈  𝒫  𝑆  →  𝑋  ⊆  𝑆 ) | 
						
							| 98 | 96 97 | syl | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 99 | 92 98 | eqsstrd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝑋  ↦  1 )  ⊆  𝑆 ) | 
						
							| 100 | 94 99 | jca | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  1 ) : dom  ( 𝑥  ∈  𝑋  ↦  1 ) ⟶ ℂ  ∧  dom  ( 𝑥  ∈  𝑋  ↦  1 )  ⊆  𝑆 ) ) | 
						
							| 101 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 102 | 101 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 103 |  | elpm2g | ⊢ ( ( ℂ  ∈  V  ∧  𝑆  ∈  { ℝ ,  ℂ } )  →  ( ( 𝑥  ∈  𝑋  ↦  1 )  ∈  ( ℂ  ↑pm  𝑆 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  1 ) : dom  ( 𝑥  ∈  𝑋  ↦  1 ) ⟶ ℂ  ∧  dom  ( 𝑥  ∈  𝑋  ↦  1 )  ⊆  𝑆 ) ) ) | 
						
							| 104 | 102 1 103 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  1 )  ∈  ( ℂ  ↑pm  𝑆 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  1 ) : dom  ( 𝑥  ∈  𝑋  ↦  1 ) ⟶ ℂ  ∧  dom  ( 𝑥  ∈  𝑋  ↦  1 )  ⊆  𝑆 ) ) ) | 
						
							| 105 | 100 104 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  1 )  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 106 |  | dvn0 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑥  ∈  𝑋  ↦  1 )  ∈  ( ℂ  ↑pm  𝑆 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  1 ) ) | 
						
							| 107 | 85 105 106 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  1 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 0 )  =  ( 𝑥  ∈  𝑋  ↦  1 ) ) | 
						
							| 109 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ ∅ ) ‘ 0 ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ ∅ ) ‘ 0 ) ) | 
						
							| 111 |  | oveq2 | ⊢ ( 𝑠  =  ∅  →  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  ∅ ) ) | 
						
							| 112 |  | elmapfn | ⊢ ( 𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ )  →  𝑥  Fn  ∅ ) | 
						
							| 113 |  | fn0 | ⊢ ( 𝑥  Fn  ∅  ↔  𝑥  =  ∅ ) | 
						
							| 114 | 112 113 | sylib | ⊢ ( 𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ )  →  𝑥  =  ∅ ) | 
						
							| 115 |  | velsn | ⊢ ( 𝑥  ∈  { ∅ }  ↔  𝑥  =  ∅ ) | 
						
							| 116 | 114 115 | sylibr | ⊢ ( 𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ )  →  𝑥  ∈  { ∅ } ) | 
						
							| 117 | 115 | biimpi | ⊢ ( 𝑥  ∈  { ∅ }  →  𝑥  =  ∅ ) | 
						
							| 118 |  | id | ⊢ ( 𝑥  =  ∅  →  𝑥  =  ∅ ) | 
						
							| 119 |  | f0 | ⊢ ∅ : ∅ ⟶ ( 0 ... 𝑛 ) | 
						
							| 120 |  | ovex | ⊢ ( 0 ... 𝑛 )  ∈  V | 
						
							| 121 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 122 | 120 121 | elmap | ⊢ ( ∅  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ )  ↔  ∅ : ∅ ⟶ ( 0 ... 𝑛 ) ) | 
						
							| 123 | 119 122 | mpbir | ⊢ ∅  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ ) | 
						
							| 124 | 123 | a1i | ⊢ ( 𝑥  =  ∅  →  ∅  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ ) ) | 
						
							| 125 | 118 124 | eqeltrd | ⊢ ( 𝑥  =  ∅  →  𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ ) ) | 
						
							| 126 | 117 125 | syl | ⊢ ( 𝑥  ∈  { ∅ }  →  𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ ) ) | 
						
							| 127 | 116 126 | impbii | ⊢ ( 𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ )  ↔  𝑥  ∈  { ∅ } ) | 
						
							| 128 | 127 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ )  ↔  𝑥  ∈  { ∅ } ) | 
						
							| 129 |  | dfcleq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  ∅ )  =  { ∅ }  ↔  ∀ 𝑥 ( 𝑥  ∈  ( ( 0 ... 𝑛 )  ↑m  ∅ )  ↔  𝑥  ∈  { ∅ } ) ) | 
						
							| 130 | 128 129 | mpbir | ⊢ ( ( 0 ... 𝑛 )  ↑m  ∅ )  =  { ∅ } | 
						
							| 131 | 130 | a1i | ⊢ ( 𝑠  =  ∅  →  ( ( 0 ... 𝑛 )  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 132 | 111 131 | eqtrd | ⊢ ( 𝑠  =  ∅  →  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  { ∅ } ) | 
						
							| 133 |  | rabeq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  { ∅ }  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 134 | 132 133 | syl | ⊢ ( 𝑠  =  ∅  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 135 |  | sumeq1 | ⊢ ( 𝑠  =  ∅  →  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 136 | 135 | eqeq1d | ⊢ ( 𝑠  =  ∅  →  ( Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 137 | 136 | rabbidv | ⊢ ( 𝑠  =  ∅  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 138 | 134 137 | eqtrd | ⊢ ( 𝑠  =  ∅  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 139 | 138 | mpteq2dv | ⊢ ( 𝑠  =  ∅  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 140 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝑇 | 
						
							| 141 | 140 | a1i | ⊢ ( 𝜑  →  ∅  ∈  𝒫  𝑇 ) | 
						
							| 142 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 143 | 142 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V | 
						
							| 144 | 143 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V ) | 
						
							| 145 | 8 139 141 144 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐷 ‘ ∅ )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 146 |  | eqeq2 | ⊢ ( 𝑛  =  0  →  ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 ) ) | 
						
							| 147 | 146 | rabbidv | ⊢ ( 𝑛  =  0  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 } ) | 
						
							| 148 | 147 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  =  0 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 } ) | 
						
							| 149 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 150 | 149 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 151 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 152 | 151 | rabex | ⊢ { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  ∈  V | 
						
							| 153 | 152 | a1i | ⊢ ( 𝜑  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  ∈  V ) | 
						
							| 154 | 145 148 150 153 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ ∅ ) ‘ 0 )  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 } ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( 𝐷 ‘ ∅ ) ‘ 0 )  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 } ) | 
						
							| 156 |  | snidg | ⊢ ( ∅  ∈  V  →  ∅  ∈  { ∅ } ) | 
						
							| 157 | 121 156 | ax-mp | ⊢ ∅  ∈  { ∅ } | 
						
							| 158 |  | eqid | ⊢ 0  =  0 | 
						
							| 159 | 157 158 | pm3.2i | ⊢ ( ∅  ∈  { ∅ }  ∧  0  =  0 ) | 
						
							| 160 |  | sum0 | ⊢ Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 | 
						
							| 161 | 160 | a1i | ⊢ ( 𝑐  =  ∅  →  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 ) | 
						
							| 162 | 161 | eqeq1d | ⊢ ( 𝑐  =  ∅  →  ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0  ↔  0  =  0 ) ) | 
						
							| 163 | 162 | elrab | ⊢ ( ∅  ∈  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  ↔  ( ∅  ∈  { ∅ }  ∧  0  =  0 ) ) | 
						
							| 164 | 159 163 | mpbir | ⊢ ∅  ∈  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 } | 
						
							| 165 | 164 | n0ii | ⊢ ¬  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  ∅ | 
						
							| 166 |  | eqid | ⊢ { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 } | 
						
							| 167 |  | rabrsn | ⊢ ( { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  →  ( { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  ∅  ∨  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  { ∅ } ) ) | 
						
							| 168 | 166 167 | ax-mp | ⊢ ( { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  ∅  ∨  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  { ∅ } ) | 
						
							| 169 | 165 168 | mtpor | ⊢ { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  { ∅ } | 
						
							| 170 | 169 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  { ∅ } ) | 
						
							| 171 |  | iftrue | ⊢ ( 𝑘  =  0  →  if ( 𝑘  =  0 ,  { ∅ } ,  ∅ )  =  { ∅ } ) | 
						
							| 172 | 171 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  if ( 𝑘  =  0 ,  { ∅ } ,  ∅ )  =  { ∅ } ) | 
						
							| 173 | 170 172 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 }  =  if ( 𝑘  =  0 ,  { ∅ } ,  ∅ ) ) | 
						
							| 174 | 110 155 173 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 )  =  if ( 𝑘  =  0 ,  { ∅ } ,  ∅ ) ) | 
						
							| 175 | 174 172 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 )  =  { ∅ } ) | 
						
							| 176 | 175 | sumeq1d | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  { ∅ } ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 177 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( ! ‘ 𝑘 )  =  ( ! ‘ 0 ) ) | 
						
							| 178 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 179 | 178 | a1i | ⊢ ( 𝑘  =  0  →  ( ! ‘ 0 )  =  1 ) | 
						
							| 180 | 177 179 | eqtrd | ⊢ ( 𝑘  =  0  →  ( ! ‘ 𝑘 )  =  1 ) | 
						
							| 181 | 180 | oveq1d | ⊢ ( 𝑘  =  0  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( 1  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 182 |  | prod0 | ⊢ ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  1 | 
						
							| 183 | 182 | oveq2i | ⊢ ( 1  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( 1  /  1 ) | 
						
							| 184 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 185 | 183 184 | eqtri | ⊢ ( 1  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  1 | 
						
							| 186 | 181 185 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  1 ) | 
						
							| 187 |  | prod0 | ⊢ ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  1 | 
						
							| 188 | 187 | a1i | ⊢ ( 𝑘  =  0  →  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  1 ) | 
						
							| 189 | 186 188 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( 1  ·  1 ) ) | 
						
							| 190 | 189 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  =  0 )  ∧  𝑐  ∈  { ∅ } )  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( 1  ·  1 ) ) | 
						
							| 191 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 192 | 191 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  =  0 )  ∧  𝑐  ∈  { ∅ } )  →  ( 1  ·  1 )  =  1 ) | 
						
							| 193 | 190 192 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  =  0 )  ∧  𝑐  ∈  { ∅ } )  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  1 ) | 
						
							| 194 | 193 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  Σ 𝑐  ∈  { ∅ } ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  { ∅ } 1 ) | 
						
							| 195 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 196 |  | eqidd | ⊢ ( 𝑐  =  ∅  →  1  =  1 ) | 
						
							| 197 | 196 | sumsn | ⊢ ( ( ∅  ∈  V  ∧  1  ∈  ℂ )  →  Σ 𝑐  ∈  { ∅ } 1  =  1 ) | 
						
							| 198 | 121 195 197 | mp2an | ⊢ Σ 𝑐  ∈  { ∅ } 1  =  1 | 
						
							| 199 | 198 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  Σ 𝑐  ∈  { ∅ } 1  =  1 ) | 
						
							| 200 | 176 194 199 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  1 ) | 
						
							| 201 | 200 | mpteq2dv | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  1 ) ) | 
						
							| 202 | 201 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑥  ∈  𝑋  ↦  1 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 203 | 83 108 202 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 204 | 203 | a1d | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 205 | 79 | fveq1i | ⊢ ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 𝑘 ) | 
						
							| 206 | 205 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 𝑘 ) ) | 
						
							| 207 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑘  =  0 )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 208 | 207 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 209 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑘  =  0 )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 211 | 195 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  1  ∈  ℂ ) | 
						
							| 212 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 213 | 212 | adantl | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 214 |  | neqne | ⊢ ( ¬  𝑘  =  0  →  𝑘  ≠  0 ) | 
						
							| 215 | 214 | adantr | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ≠  0 ) | 
						
							| 216 | 213 215 | jca | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑘  ∈  ℕ0  ∧  𝑘  ≠  0 ) ) | 
						
							| 217 |  | elnnne0 | ⊢ ( 𝑘  ∈  ℕ  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑘  ≠  0 ) ) | 
						
							| 218 | 216 217 | sylibr | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 219 | 218 | adantll | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 220 | 208 210 211 219 | dvnmptconst | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  1 ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 221 | 145 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐷 ‘ ∅ )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 222 |  | eqeq2 | ⊢ ( 𝑛  =  𝑘  →  ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 ) ) | 
						
							| 223 | 222 | rabbidv | ⊢ ( 𝑛  =  𝑘  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 224 | 223 | adantl | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑛  =  𝑘 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 } ) | 
						
							| 225 |  | eqidd | ⊢ ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘  →  𝑘  =  𝑘 ) | 
						
							| 226 |  | id | ⊢ ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘  →  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 ) | 
						
							| 227 | 226 | eqcomd | ⊢ ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘  →  𝑘  =  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 228 | 160 | a1i | ⊢ ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘  →  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  0 ) | 
						
							| 229 | 225 227 228 | 3eqtrd | ⊢ ( Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘  →  𝑘  =  0 ) | 
						
							| 230 | 229 | adantl | ⊢ ( ( 𝑐  ∈  { ∅ }  ∧  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 )  →  𝑘  =  0 ) | 
						
							| 231 | 230 | adantll | ⊢ ( ( ( ¬  𝑘  =  0  ∧  𝑐  ∈  { ∅ } )  ∧  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 )  →  𝑘  =  0 ) | 
						
							| 232 |  | simpll | ⊢ ( ( ( ¬  𝑘  =  0  ∧  𝑐  ∈  { ∅ } )  ∧  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 )  →  ¬  𝑘  =  0 ) | 
						
							| 233 | 231 232 | pm2.65da | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑐  ∈  { ∅ } )  →  ¬  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 ) | 
						
							| 234 | 233 | ralrimiva | ⊢ ( ¬  𝑘  =  0  →  ∀ 𝑐  ∈  { ∅ } ¬  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 ) | 
						
							| 235 |  | rabeq0 | ⊢ ( { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 }  =  ∅  ↔  ∀ 𝑐  ∈  { ∅ } ¬  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 ) | 
						
							| 236 | 234 235 | sylibr | ⊢ ( ¬  𝑘  =  0  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 }  =  ∅ ) | 
						
							| 237 | 236 | adantr | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑛  =  𝑘 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑘 }  =  ∅ ) | 
						
							| 238 | 224 237 | eqtrd | ⊢ ( ( ¬  𝑘  =  0  ∧  𝑛  =  𝑘 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  ∅ ) | 
						
							| 239 | 238 | adantll | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑛  =  𝑘 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  ∅ ) | 
						
							| 240 | 239 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑛  =  𝑘 )  →  { 𝑐  ∈  { ∅ }  ∣  Σ 𝑡  ∈  ∅ ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  ∅ ) | 
						
							| 241 | 212 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 242 | 121 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ∅  ∈  V ) | 
						
							| 243 | 221 240 241 242 | fvmptd | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 )  =  ∅ ) | 
						
							| 244 | 243 | sumeq1d | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ∅ ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 245 |  | sum0 | ⊢ Σ 𝑐  ∈  ∅ ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  0 | 
						
							| 246 | 245 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  Σ 𝑐  ∈  ∅ ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 247 | 244 246 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  0  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 248 | 247 | mpteq2dv | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑥  ∈  𝑋  ↦  0 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 249 | 206 220 248 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ¬  𝑘  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 250 | 249 | ex | ⊢ ( ( 𝜑  ∧  ¬  𝑘  =  0 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 251 | 204 250 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 252 | 251 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ∅ ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 253 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) ) ) | 
						
							| 254 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) | 
						
							| 255 | 254 | prodeq2ad | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) | 
						
							| 256 |  | fveq2 | ⊢ ( 𝑡  =  𝑢  →  ( 𝐻 ‘ 𝑡 )  =  ( 𝐻 ‘ 𝑢 ) ) | 
						
							| 257 | 256 | fveq1d | ⊢ ( 𝑡  =  𝑢  →  ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 )  =  ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) | 
						
							| 258 | 257 | cbvprodv | ⊢ ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 )  =  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) | 
						
							| 259 | 258 | a1i | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 )  =  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) | 
						
							| 260 | 255 259 | eqtrd | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 )  =  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) | 
						
							| 261 | 260 | cbvmptv | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) )  =  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) | 
						
							| 262 | 261 | oveq2i | ⊢ ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) )  =  ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) | 
						
							| 263 | 262 | fveq1i | ⊢ ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) | 
						
							| 264 |  | fveq2 | ⊢ ( 𝑡  =  𝑢  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑢 ) ) | 
						
							| 265 | 264 | fveq2d | ⊢ ( 𝑡  =  𝑢  →  ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) | 
						
							| 266 | 265 | cbvprodv | ⊢ ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) )  =  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) | 
						
							| 267 | 266 | oveq2i | ⊢ ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) | 
						
							| 268 | 267 | a1i | ⊢ ( 𝑥  =  𝑦  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) ) | 
						
							| 269 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) ) | 
						
							| 270 | 269 | prodeq2ad | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) ) | 
						
							| 271 | 256 | oveq2d | ⊢ ( 𝑡  =  𝑢  →  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) )  =  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ) | 
						
							| 272 | 271 264 | fveq12d | ⊢ ( 𝑡  =  𝑢  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ) | 
						
							| 273 | 272 | fveq1d | ⊢ ( 𝑡  =  𝑢  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) | 
						
							| 274 | 273 | cbvprodv | ⊢ ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 )  =  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) | 
						
							| 275 | 274 | a1i | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 )  =  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) | 
						
							| 276 | 270 275 | eqtrd | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) | 
						
							| 277 | 268 276 | oveq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) | 
						
							| 278 | 277 | sumeq2sdv | ⊢ ( 𝑥  =  𝑦  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) | 
						
							| 279 |  | fveq1 | ⊢ ( 𝑐  =  𝑑  →  ( 𝑐 ‘ 𝑢 )  =  ( 𝑑 ‘ 𝑢 ) ) | 
						
							| 280 | 279 | fveq2d | ⊢ ( 𝑐  =  𝑑  →  ( ! ‘ ( 𝑐 ‘ 𝑢 ) )  =  ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) | 
						
							| 281 | 280 | prodeq2ad | ⊢ ( 𝑐  =  𝑑  →  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) )  =  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) | 
						
							| 282 | 281 | oveq2d | ⊢ ( 𝑐  =  𝑑  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) ) | 
						
							| 283 | 279 | fveq2d | ⊢ ( 𝑐  =  𝑑  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ) | 
						
							| 284 | 283 | fveq1d | ⊢ ( 𝑐  =  𝑑  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) | 
						
							| 285 | 284 | prodeq2ad | ⊢ ( 𝑐  =  𝑑  →  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 )  =  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) | 
						
							| 286 | 282 285 | oveq12d | ⊢ ( 𝑐  =  𝑑  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) | 
						
							| 287 | 286 | cbvsumv | ⊢ Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) )  =  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) | 
						
							| 288 | 287 | a1i | ⊢ ( 𝑥  =  𝑦  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) )  =  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) | 
						
							| 289 | 278 288 | eqtrd | ⊢ ( 𝑥  =  𝑦  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) | 
						
							| 290 | 289 | cbvmptv | ⊢ ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) | 
						
							| 291 | 263 290 | eqeq12i | ⊢ ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 292 | 291 | ralbii | ⊢ ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 293 | 292 | biimpi | ⊢ ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 294 | 293 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 295 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 296 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 297 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 298 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑇  ∈  Fin ) | 
						
							| 299 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  𝜑 ) | 
						
							| 300 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 301 | 299 300 4 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) | 
						
							| 302 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 303 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 304 | 303 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇  ∧  ℎ  ∈  ( 0 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 305 |  | simp2 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇  ∧  ℎ  ∈  ( 0 ... 𝑁 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 306 |  | simp3 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇  ∧  ℎ  ∈  ( 0 ... 𝑁 ) )  →  ℎ  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 307 |  | eleq1w | ⊢ ( 𝑗  =  ℎ  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  ℎ  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 308 | 307 | 3anbi3d | ⊢ ( 𝑗  =  ℎ  →  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ℎ  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 309 |  | fveq2 | ⊢ ( 𝑗  =  ℎ  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) ) | 
						
							| 310 | 309 | feq1d | ⊢ ( 𝑗  =  ℎ  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ  ↔  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 311 | 308 310 | imbi12d | ⊢ ( 𝑗  =  ℎ  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ℎ  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) ) ) | 
						
							| 312 | 311 6 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  ℎ  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) | 
						
							| 313 | 304 305 306 312 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇  ∧  ℎ  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) | 
						
							| 314 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  →  𝑟  ⊆  𝑇 ) | 
						
							| 315 | 314 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑟  ⊆  𝑇 ) | 
						
							| 316 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  →  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) | 
						
							| 317 | 316 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) | 
						
							| 318 | 262 | eqcomi | ⊢ ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) | 
						
							| 319 | 318 | a1i | ⊢ ( 𝑘  =  𝑙  →  ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) )  =  ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) | 
						
							| 320 |  | id | ⊢ ( 𝑘  =  𝑙  →  𝑘  =  𝑙 ) | 
						
							| 321 | 319 320 | fveq12d | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) ) | 
						
							| 322 | 290 | eqcomi | ⊢ ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 323 | 322 | a1i | ⊢ ( 𝑘  =  𝑙  →  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 324 |  | fveq2 | ⊢ ( 𝑘  =  𝑙  →  ( ! ‘ 𝑘 )  =  ( ! ‘ 𝑙 ) ) | 
						
							| 325 | 324 | oveq1d | ⊢ ( 𝑘  =  𝑙  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 326 | 325 | oveq1d | ⊢ ( 𝑘  =  𝑙  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 327 | 326 | sumeq2sdv | ⊢ ( 𝑘  =  𝑙  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 328 |  | fveq2 | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ) | 
						
							| 329 | 328 | sumeq1d | ⊢ ( 𝑘  =  𝑙  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 330 | 327 329 | eqtrd | ⊢ ( 𝑘  =  𝑙  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 331 | 330 | mpteq2dv | ⊢ ( 𝑘  =  𝑙  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 332 | 323 331 | eqtrd | ⊢ ( 𝑘  =  𝑙  →  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 333 | 321 332 | eqeq12d | ⊢ ( 𝑘  =  𝑙  →  ( ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 334 | 333 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) )  ↔  ∀ 𝑙  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 335 | 334 | biimpi | ⊢ ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) )  →  ∀ 𝑙  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 336 | 335 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∀ 𝑙  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 337 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 338 |  | fveq1 | ⊢ ( 𝑑  =  𝑐  →  ( 𝑑 ‘ 𝑧 )  =  ( 𝑐 ‘ 𝑧 ) ) | 
						
							| 339 | 338 | oveq2d | ⊢ ( 𝑑  =  𝑐  →  ( 𝑗  −  ( 𝑑 ‘ 𝑧 ) )  =  ( 𝑗  −  ( 𝑐 ‘ 𝑧 ) ) ) | 
						
							| 340 |  | reseq1 | ⊢ ( 𝑑  =  𝑐  →  ( 𝑑  ↾  𝑟 )  =  ( 𝑐  ↾  𝑟 ) ) | 
						
							| 341 | 339 340 | opeq12d | ⊢ ( 𝑑  =  𝑐  →  〈 ( 𝑗  −  ( 𝑑 ‘ 𝑧 ) ) ,  ( 𝑑  ↾  𝑟 ) 〉  =  〈 ( 𝑗  −  ( 𝑐 ‘ 𝑧 ) ) ,  ( 𝑐  ↾  𝑟 ) 〉 ) | 
						
							| 342 | 341 | cbvmptv | ⊢ ( 𝑑  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 )  ↦  〈 ( 𝑗  −  ( 𝑑 ‘ 𝑧 ) ) ,  ( 𝑑  ↾  𝑟 ) 〉 )  =  ( 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 )  ↦  〈 ( 𝑗  −  ( 𝑐 ‘ 𝑧 ) ) ,  ( 𝑐  ↾  𝑟 ) 〉 ) | 
						
							| 343 | 296 297 298 301 302 313 8 315 317 336 337 342 | dvnprodlem2 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑦  ∈  𝑋  ↦  ∏ 𝑢  ∈  𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑑  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑢  ∈  𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) )  ·  ∏ 𝑢  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 344 | 253 294 295 343 | syl21anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 345 | 344 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 346 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 )  =  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) | 
						
							| 347 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( ! ‘ 𝑗 )  =  ( ! ‘ 𝑘 ) ) | 
						
							| 348 | 347 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 349 | 348 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 350 | 349 | sumeq2sdv | ⊢ ( 𝑗  =  𝑘  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 351 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 )  =  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ) | 
						
							| 352 | 351 | sumeq1d | ⊢ ( 𝑗  =  𝑘  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 353 | 350 352 | eqtrd | ⊢ ( 𝑗  =  𝑘  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 354 | 353 | mpteq2dv | ⊢ ( 𝑗  =  𝑘  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 355 | 346 354 | eqeq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 356 | 355 | cbvralvw | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 357 | 345 356 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) )  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 358 | 357 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑟  ⊆  𝑇  ∧  𝑧  ∈  ( 𝑇  ∖  𝑟 ) ) )  →  ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑟 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ ( 𝑟  ∪  { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  ( 𝑟  ∪  { 𝑧 } ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 359 | 25 41 57 76 252 358 3 | findcard2d | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 360 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 361 | 5 360 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 362 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 363 | 361 362 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 364 |  | fveq2 | ⊢ ( 𝑘  =  𝑁  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 365 |  | fveq2 | ⊢ ( 𝑘  =  𝑁  →  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 )  =  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ) | 
						
							| 366 | 365 | sumeq1d | ⊢ ( 𝑘  =  𝑁  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 367 |  | fveq2 | ⊢ ( 𝑘  =  𝑁  →  ( ! ‘ 𝑘 )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 368 | 367 | oveq1d | ⊢ ( 𝑘  =  𝑁  →  ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 369 | 368 | oveq1d | ⊢ ( 𝑘  =  𝑁  →  ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 370 | 369 | sumeq2sdv | ⊢ ( 𝑘  =  𝑁  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 371 | 366 370 | eqtrd | ⊢ ( 𝑘  =  𝑁  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 372 | 371 | mpteq2dv | ⊢ ( 𝑘  =  𝑁  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 373 | 364 372 | eqeq12d | ⊢ ( 𝑘  =  𝑁  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 374 | 373 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 375 | 359 363 374 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 376 |  | oveq2 | ⊢ ( 𝑠  =  𝑇  →  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑇 ) ) | 
						
							| 377 |  | rabeq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  𝑠 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 378 | 376 377 | syl | ⊢ ( 𝑠  =  𝑇  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 379 |  | sumeq1 | ⊢ ( 𝑠  =  𝑇  →  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 380 | 379 | eqeq1d | ⊢ ( 𝑠  =  𝑇  →  ( Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 381 | 380 | rabbidv | ⊢ ( 𝑠  =  𝑇  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 382 | 378 381 | eqtrd | ⊢ ( 𝑠  =  𝑇  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 383 | 382 | mpteq2dv | ⊢ ( 𝑠  =  𝑇  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 384 |  | pwidg | ⊢ ( 𝑇  ∈  Fin  →  𝑇  ∈  𝒫  𝑇 ) | 
						
							| 385 | 3 384 | syl | ⊢ ( 𝜑  →  𝑇  ∈  𝒫  𝑇 ) | 
						
							| 386 | 142 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V | 
						
							| 387 | 386 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  ∈  V ) | 
						
							| 388 | 8 383 385 387 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑇 )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 389 | 9 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 390 | 388 389 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑇 )  =  𝐶 ) | 
						
							| 391 | 390 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 )  =  ( 𝐶 ‘ 𝑁 ) ) | 
						
							| 392 | 391 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 393 | 392 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 394 | 375 393 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |