Step |
Hyp |
Ref |
Expression |
1 |
|
dvnprodlem3.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvnprodlem3.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
dvnprodlem3.t |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
4 |
|
dvnprodlem3.h |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) |
5 |
|
dvnprodlem3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
dvnprodlem3.dvnh |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) |
7 |
|
dvnprodlem3.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
8 |
|
dvnprodlem3.d |
⊢ 𝐷 = ( 𝑠 ∈ 𝒫 𝑇 ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
9 |
|
dvnprodlem3.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
10 |
|
prodeq1 |
⊢ ( 𝑠 = ∅ → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
11 |
10
|
mpteq2dv |
⊢ ( 𝑠 = ∅ → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝑠 = ∅ → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑠 = ∅ → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ ∅ ) ) |
15 |
14
|
fveq1d |
⊢ ( 𝑠 = ∅ → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ) |
16 |
15
|
sumeq1d |
⊢ ( 𝑠 = ∅ → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
17 |
|
prodeq1 |
⊢ ( 𝑠 = ∅ → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
19 |
|
prodeq1 |
⊢ ( 𝑠 = ∅ → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
20 |
18 19
|
oveq12d |
⊢ ( 𝑠 = ∅ → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
21 |
20
|
sumeq2sdv |
⊢ ( 𝑠 = ∅ → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
22 |
16 21
|
eqtrd |
⊢ ( 𝑠 = ∅ → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
23 |
22
|
mpteq2dv |
⊢ ( 𝑠 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
24 |
13 23
|
eqeq12d |
⊢ ( 𝑠 = ∅ → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑠 = ∅ → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
26 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑟 → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
27 |
26
|
mpteq2dv |
⊢ ( 𝑠 = 𝑟 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑠 = 𝑟 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝑠 = 𝑟 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑠 = 𝑟 → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ 𝑟 ) ) |
31 |
30
|
fveq1d |
⊢ ( 𝑠 = 𝑟 → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ) |
32 |
31
|
sumeq1d |
⊢ ( 𝑠 = 𝑟 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
33 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑟 → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑠 = 𝑟 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
35 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑟 → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
36 |
34 35
|
oveq12d |
⊢ ( 𝑠 = 𝑟 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
37 |
36
|
sumeq2sdv |
⊢ ( 𝑠 = 𝑟 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
38 |
32 37
|
eqtrd |
⊢ ( 𝑠 = 𝑟 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
39 |
38
|
mpteq2dv |
⊢ ( 𝑠 = 𝑟 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
40 |
29 39
|
eqeq12d |
⊢ ( 𝑠 = 𝑟 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
41 |
40
|
ralbidv |
⊢ ( 𝑠 = 𝑟 → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
42 |
|
prodeq1 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
43 |
42
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
45 |
44
|
fveq1d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ) |
47 |
46
|
fveq1d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ) |
48 |
47
|
sumeq1d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
49 |
|
prodeq1 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
50 |
49
|
oveq2d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
51 |
|
prodeq1 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
52 |
50 51
|
oveq12d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
53 |
52
|
sumeq2sdv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
54 |
48 53
|
eqtrd |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
55 |
54
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
56 |
45 55
|
eqeq12d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
57 |
56
|
ralbidv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
58 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑇 → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
59 |
58
|
mpteq2dv |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
60 |
7
|
a1i |
⊢ ( 𝑠 = 𝑇 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
61 |
60
|
eqcomd |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = 𝐹 ) |
62 |
59 61
|
eqtrd |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = 𝐹 ) |
63 |
62
|
oveq2d |
⊢ ( 𝑠 = 𝑇 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 𝐹 ) ) |
64 |
63
|
fveq1d |
⊢ ( 𝑠 = 𝑇 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
65 |
|
fveq2 |
⊢ ( 𝑠 = 𝑇 → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ 𝑇 ) ) |
66 |
65
|
fveq1d |
⊢ ( 𝑠 = 𝑇 → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ) |
67 |
66
|
sumeq1d |
⊢ ( 𝑠 = 𝑇 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
68 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑇 → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
69 |
68
|
oveq2d |
⊢ ( 𝑠 = 𝑇 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
70 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑇 → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
71 |
69 70
|
oveq12d |
⊢ ( 𝑠 = 𝑇 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
72 |
71
|
sumeq2sdv |
⊢ ( 𝑠 = 𝑇 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
73 |
67 72
|
eqtrd |
⊢ ( 𝑠 = 𝑇 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
74 |
73
|
mpteq2dv |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
75 |
64 74
|
eqeq12d |
⊢ ( 𝑠 = 𝑇 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
76 |
75
|
ralbidv |
⊢ ( 𝑠 = 𝑇 → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
77 |
|
prod0 |
⊢ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = 1 |
78 |
77
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) |
79 |
78
|
oveq2i |
⊢ ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
80 |
79
|
a1i |
⊢ ( 𝑘 = 0 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ) |
81 |
|
id |
⊢ ( 𝑘 = 0 → 𝑘 = 0 ) |
82 |
80 81
|
fveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) ) |
83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) ) |
84 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
85 |
1 84
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
86 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℂ ) |
87 |
86
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 1 ) : 𝑋 ⟶ ℂ ) |
88 |
|
1re |
⊢ 1 ∈ ℝ |
89 |
88
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑋 1 ∈ ℝ |
90 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 1 ∈ ℝ → dom ( 𝑥 ∈ 𝑋 ↦ 1 ) = 𝑋 ) |
91 |
89 90
|
ax-mp |
⊢ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) = 𝑋 |
92 |
91
|
a1i |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 1 ) = 𝑋 ) |
93 |
92
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 1 ) : 𝑋 ⟶ ℂ ) ) |
94 |
87 93
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ) |
95 |
|
restsspw |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ⊆ 𝒫 𝑆 |
96 |
95 2
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑆 ) |
97 |
|
elpwi |
⊢ ( 𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆 ) |
98 |
96 97
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
99 |
92 98
|
eqsstrd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) |
100 |
94 99
|
jca |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) ) |
101 |
|
cnex |
⊢ ℂ ∈ V |
102 |
101
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
103 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) ) ) |
104 |
102 1 103
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) ) ) |
105 |
100 104
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
106 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
107 |
85 105 106
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
109 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ∅ ) ‘ 0 ) ) |
110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ∅ ) ‘ 0 ) ) |
111 |
|
oveq2 |
⊢ ( 𝑠 = ∅ → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
112 |
|
elmapfn |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) → 𝑥 Fn ∅ ) |
113 |
|
fn0 |
⊢ ( 𝑥 Fn ∅ ↔ 𝑥 = ∅ ) |
114 |
112 113
|
sylib |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) → 𝑥 = ∅ ) |
115 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
116 |
114 115
|
sylibr |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) → 𝑥 ∈ { ∅ } ) |
117 |
115
|
biimpi |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
118 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
119 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( 0 ... 𝑛 ) |
120 |
|
ovex |
⊢ ( 0 ... 𝑛 ) ∈ V |
121 |
|
0ex |
⊢ ∅ ∈ V |
122 |
120 121
|
elmap |
⊢ ( ∅ ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ ∅ : ∅ ⟶ ( 0 ... 𝑛 ) ) |
123 |
119 122
|
mpbir |
⊢ ∅ ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) |
124 |
123
|
a1i |
⊢ ( 𝑥 = ∅ → ∅ ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
125 |
118 124
|
eqeltrd |
⊢ ( 𝑥 = ∅ → 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
126 |
117 125
|
syl |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
127 |
116 126
|
impbii |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ 𝑥 ∈ { ∅ } ) |
128 |
127
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ 𝑥 ∈ { ∅ } ) |
129 |
|
dfcleq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m ∅ ) = { ∅ } ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ 𝑥 ∈ { ∅ } ) ) |
130 |
128 129
|
mpbir |
⊢ ( ( 0 ... 𝑛 ) ↑m ∅ ) = { ∅ } |
131 |
130
|
a1i |
⊢ ( 𝑠 = ∅ → ( ( 0 ... 𝑛 ) ↑m ∅ ) = { ∅ } ) |
132 |
111 131
|
eqtrd |
⊢ ( 𝑠 = ∅ → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = { ∅ } ) |
133 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = { ∅ } → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
134 |
132 133
|
syl |
⊢ ( 𝑠 = ∅ → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
135 |
|
sumeq1 |
⊢ ( 𝑠 = ∅ → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) ) |
136 |
135
|
eqeq1d |
⊢ ( 𝑠 = ∅ → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
137 |
136
|
rabbidv |
⊢ ( 𝑠 = ∅ → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
138 |
134 137
|
eqtrd |
⊢ ( 𝑠 = ∅ → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
139 |
138
|
mpteq2dv |
⊢ ( 𝑠 = ∅ → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
140 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑇 |
141 |
140
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝑇 ) |
142 |
|
nn0ex |
⊢ ℕ0 ∈ V |
143 |
142
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
144 |
143
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
145 |
8 139 141 144
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ ∅ ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
146 |
|
eqeq2 |
⊢ ( 𝑛 = 0 → ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ) ) |
147 |
146
|
rabbidv |
⊢ ( 𝑛 = 0 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 0 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
149 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
150 |
149
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
151 |
|
p0ex |
⊢ { ∅ } ∈ V |
152 |
151
|
rabex |
⊢ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ∈ V |
153 |
152
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ∈ V ) |
154 |
145 148 150 153
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ∅ ) ‘ 0 ) = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 0 ) = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
156 |
|
snidg |
⊢ ( ∅ ∈ V → ∅ ∈ { ∅ } ) |
157 |
121 156
|
ax-mp |
⊢ ∅ ∈ { ∅ } |
158 |
|
eqid |
⊢ 0 = 0 |
159 |
157 158
|
pm3.2i |
⊢ ( ∅ ∈ { ∅ } ∧ 0 = 0 ) |
160 |
|
sum0 |
⊢ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 |
161 |
160
|
a1i |
⊢ ( 𝑐 = ∅ → Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ) |
162 |
161
|
eqeq1d |
⊢ ( 𝑐 = ∅ → ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ↔ 0 = 0 ) ) |
163 |
162
|
elrab |
⊢ ( ∅ ∈ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ↔ ( ∅ ∈ { ∅ } ∧ 0 = 0 ) ) |
164 |
159 163
|
mpbir |
⊢ ∅ ∈ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } |
165 |
164
|
n0ii |
⊢ ¬ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = ∅ |
166 |
|
eqid |
⊢ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } |
167 |
|
rabrsn |
⊢ ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } → ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = ∅ ∨ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } ) ) |
168 |
166 167
|
ax-mp |
⊢ ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = ∅ ∨ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } ) |
169 |
165 168
|
mtpor |
⊢ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } |
170 |
169
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } ) |
171 |
|
iftrue |
⊢ ( 𝑘 = 0 → if ( 𝑘 = 0 , { ∅ } , ∅ ) = { ∅ } ) |
172 |
171
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → if ( 𝑘 = 0 , { ∅ } , ∅ ) = { ∅ } ) |
173 |
170 172
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = if ( 𝑘 = 0 , { ∅ } , ∅ ) ) |
174 |
110 155 173
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = if ( 𝑘 = 0 , { ∅ } , ∅ ) ) |
175 |
174 172
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = { ∅ } ) |
176 |
175
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ { ∅ } ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
177 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = ( ! ‘ 0 ) ) |
178 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
179 |
178
|
a1i |
⊢ ( 𝑘 = 0 → ( ! ‘ 0 ) = 1 ) |
180 |
177 179
|
eqtrd |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = 1 ) |
181 |
180
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( 1 / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
182 |
|
prod0 |
⊢ ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = 1 |
183 |
182
|
oveq2i |
⊢ ( 1 / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( 1 / 1 ) |
184 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
185 |
183 184
|
eqtri |
⊢ ( 1 / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = 1 |
186 |
181 185
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = 1 ) |
187 |
|
prod0 |
⊢ ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = 1 |
188 |
187
|
a1i |
⊢ ( 𝑘 = 0 → ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = 1 ) |
189 |
186 188
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( 1 · 1 ) ) |
190 |
189
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 = 0 ) ∧ 𝑐 ∈ { ∅ } ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( 1 · 1 ) ) |
191 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
192 |
191
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 = 0 ) ∧ 𝑐 ∈ { ∅ } ) → ( 1 · 1 ) = 1 ) |
193 |
190 192
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 = 0 ) ∧ 𝑐 ∈ { ∅ } ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 1 ) |
194 |
193
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ { ∅ } ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ { ∅ } 1 ) |
195 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
196 |
|
eqidd |
⊢ ( 𝑐 = ∅ → 1 = 1 ) |
197 |
196
|
sumsn |
⊢ ( ( ∅ ∈ V ∧ 1 ∈ ℂ ) → Σ 𝑐 ∈ { ∅ } 1 = 1 ) |
198 |
121 195 197
|
mp2an |
⊢ Σ 𝑐 ∈ { ∅ } 1 = 1 |
199 |
198
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ { ∅ } 1 = 1 ) |
200 |
176 194 199
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 1 ) |
201 |
200
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
202 |
201
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑥 ∈ 𝑋 ↦ 1 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
203 |
83 108 202
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
204 |
203
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
205 |
79
|
fveq1i |
⊢ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 𝑘 ) |
206 |
205
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 𝑘 ) ) |
207 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) → 𝑆 ∈ { ℝ , ℂ } ) |
208 |
207
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
209 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
210 |
209
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
211 |
195
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 1 ∈ ℂ ) |
212 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
213 |
212
|
adantl |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
214 |
|
neqne |
⊢ ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 ) |
215 |
214
|
adantr |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ≠ 0 ) |
216 |
213 215
|
jca |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0 ) ) |
217 |
|
elnnne0 |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0 ) ) |
218 |
216 217
|
sylibr |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
219 |
218
|
adantll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
220 |
208 210 211 219
|
dvnmptconst |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
221 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐷 ‘ ∅ ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
222 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑘 → ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) ) |
223 |
222
|
rabbidv |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
224 |
223
|
adantl |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
225 |
|
eqidd |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → 𝑘 = 𝑘 ) |
226 |
|
id |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
227 |
226
|
eqcomd |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → 𝑘 = Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) ) |
228 |
160
|
a1i |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ) |
229 |
225 227 228
|
3eqtrd |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → 𝑘 = 0 ) |
230 |
229
|
adantl |
⊢ ( ( 𝑐 ∈ { ∅ } ∧ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) → 𝑘 = 0 ) |
231 |
230
|
adantll |
⊢ ( ( ( ¬ 𝑘 = 0 ∧ 𝑐 ∈ { ∅ } ) ∧ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) → 𝑘 = 0 ) |
232 |
|
simpll |
⊢ ( ( ( ¬ 𝑘 = 0 ∧ 𝑐 ∈ { ∅ } ) ∧ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) → ¬ 𝑘 = 0 ) |
233 |
231 232
|
pm2.65da |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑐 ∈ { ∅ } ) → ¬ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
234 |
233
|
ralrimiva |
⊢ ( ¬ 𝑘 = 0 → ∀ 𝑐 ∈ { ∅ } ¬ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
235 |
|
rabeq0 |
⊢ ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } = ∅ ↔ ∀ 𝑐 ∈ { ∅ } ¬ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
236 |
234 235
|
sylibr |
⊢ ( ¬ 𝑘 = 0 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } = ∅ ) |
237 |
236
|
adantr |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } = ∅ ) |
238 |
224 237
|
eqtrd |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = ∅ ) |
239 |
238
|
adantll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = ∅ ) |
240 |
239
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = ∅ ) |
241 |
212
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
242 |
121
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ∅ ∈ V ) |
243 |
221 240 241 242
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = ∅ ) |
244 |
243
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ∅ ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
245 |
|
sum0 |
⊢ Σ 𝑐 ∈ ∅ ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 0 |
246 |
245
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑐 ∈ ∅ ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 0 ) |
247 |
244 246
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 0 = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
248 |
247
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ∈ 𝑋 ↦ 0 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
249 |
206 220 248
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
250 |
249
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
251 |
204 250
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
252 |
251
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
253 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ) |
254 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) |
255 |
254
|
prodeq2ad |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) |
256 |
|
fveq2 |
⊢ ( 𝑡 = 𝑢 → ( 𝐻 ‘ 𝑡 ) = ( 𝐻 ‘ 𝑢 ) ) |
257 |
256
|
fveq1d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
258 |
257
|
cbvprodv |
⊢ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) |
259 |
258
|
a1i |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
260 |
255 259
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
261 |
260
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
262 |
261
|
oveq2i |
⊢ ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) |
263 |
262
|
fveq1i |
⊢ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) |
264 |
|
fveq2 |
⊢ ( 𝑡 = 𝑢 → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑢 ) ) |
265 |
264
|
fveq2d |
⊢ ( 𝑡 = 𝑢 → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) |
266 |
265
|
cbvprodv |
⊢ ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) |
267 |
266
|
oveq2i |
⊢ ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) |
268 |
267
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) ) |
269 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) ) |
270 |
269
|
prodeq2ad |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) ) |
271 |
256
|
oveq2d |
⊢ ( 𝑡 = 𝑢 → ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) = ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ) |
272 |
271 264
|
fveq12d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ) |
273 |
272
|
fveq1d |
⊢ ( 𝑡 = 𝑢 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
274 |
273
|
cbvprodv |
⊢ ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) |
275 |
274
|
a1i |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
276 |
270 275
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
277 |
268 276
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
278 |
277
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑦 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
279 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑢 ) ) |
280 |
279
|
fveq2d |
⊢ ( 𝑐 = 𝑑 → ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) = ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) |
281 |
280
|
prodeq2ad |
⊢ ( 𝑐 = 𝑑 → ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) = ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) |
282 |
281
|
oveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) ) |
283 |
279
|
fveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ) |
284 |
283
|
fveq1d |
⊢ ( 𝑐 = 𝑑 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
285 |
284
|
prodeq2ad |
⊢ ( 𝑐 = 𝑑 → ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
286 |
282 285
|
oveq12d |
⊢ ( 𝑐 = 𝑑 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
287 |
286
|
cbvsumv |
⊢ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) = Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
288 |
287
|
a1i |
⊢ ( 𝑥 = 𝑦 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) = Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
289 |
278 288
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
290 |
289
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
291 |
263 290
|
eqeq12i |
⊢ ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
292 |
291
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
293 |
292
|
biimpi |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
294 |
293
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
295 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
296 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
297 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
298 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑇 ∈ Fin ) |
299 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝜑 ) |
300 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
301 |
299 300 4
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) |
302 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
303 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
304 |
303
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
305 |
|
simp2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → 𝑡 ∈ 𝑇 ) |
306 |
|
simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ℎ ∈ ( 0 ... 𝑁 ) ) |
307 |
|
eleq1w |
⊢ ( 𝑗 = ℎ → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ℎ ∈ ( 0 ... 𝑁 ) ) ) |
308 |
307
|
3anbi3d |
⊢ ( 𝑗 = ℎ → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) ) ) |
309 |
|
fveq2 |
⊢ ( 𝑗 = ℎ → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) ) |
310 |
309
|
feq1d |
⊢ ( 𝑗 = ℎ → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) ) |
311 |
308 310
|
imbi12d |
⊢ ( 𝑗 = ℎ → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) ) ) |
312 |
311 6
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) |
313 |
304 305 306 312
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) |
314 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) → 𝑟 ⊆ 𝑇 ) |
315 |
314
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑟 ⊆ 𝑇 ) |
316 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) → 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) |
317 |
316
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) |
318 |
262
|
eqcomi |
⊢ ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
319 |
318
|
a1i |
⊢ ( 𝑘 = 𝑙 → ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
320 |
|
id |
⊢ ( 𝑘 = 𝑙 → 𝑘 = 𝑙 ) |
321 |
319 320
|
fveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) ) |
322 |
290
|
eqcomi |
⊢ ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
323 |
322
|
a1i |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
324 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑙 ) ) |
325 |
324
|
oveq1d |
⊢ ( 𝑘 = 𝑙 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
326 |
325
|
oveq1d |
⊢ ( 𝑘 = 𝑙 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
327 |
326
|
sumeq2sdv |
⊢ ( 𝑘 = 𝑙 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
328 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ) |
329 |
328
|
sumeq1d |
⊢ ( 𝑘 = 𝑙 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
330 |
327 329
|
eqtrd |
⊢ ( 𝑘 = 𝑙 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
331 |
330
|
mpteq2dv |
⊢ ( 𝑘 = 𝑙 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
332 |
323 331
|
eqtrd |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
333 |
321 332
|
eqeq12d |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
334 |
333
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ↔ ∀ 𝑙 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
335 |
334
|
biimpi |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) → ∀ 𝑙 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
336 |
335
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ∀ 𝑙 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
337 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
338 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) ) |
339 |
338
|
oveq2d |
⊢ ( 𝑑 = 𝑐 → ( 𝑗 − ( 𝑑 ‘ 𝑧 ) ) = ( 𝑗 − ( 𝑐 ‘ 𝑧 ) ) ) |
340 |
|
reseq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ↾ 𝑟 ) = ( 𝑐 ↾ 𝑟 ) ) |
341 |
339 340
|
opeq12d |
⊢ ( 𝑑 = 𝑐 → 〈 ( 𝑗 − ( 𝑑 ‘ 𝑧 ) ) , ( 𝑑 ↾ 𝑟 ) 〉 = 〈 ( 𝑗 − ( 𝑐 ‘ 𝑧 ) ) , ( 𝑐 ↾ 𝑟 ) 〉 ) |
342 |
341
|
cbvmptv |
⊢ ( 𝑑 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ↦ 〈 ( 𝑗 − ( 𝑑 ‘ 𝑧 ) ) , ( 𝑑 ↾ 𝑟 ) 〉 ) = ( 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ↦ 〈 ( 𝑗 − ( 𝑐 ‘ 𝑧 ) ) , ( 𝑐 ↾ 𝑟 ) 〉 ) |
343 |
296 297 298 301 302 313 8 315 317 336 337 342
|
dvnprodlem2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
344 |
253 294 295 343
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
345 |
344
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
346 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
347 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) |
348 |
347
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
349 |
348
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
350 |
349
|
sumeq2sdv |
⊢ ( 𝑗 = 𝑘 → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
351 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) = ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ) |
352 |
351
|
sumeq1d |
⊢ ( 𝑗 = 𝑘 → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
353 |
350 352
|
eqtrd |
⊢ ( 𝑗 = 𝑘 → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
354 |
353
|
mpteq2dv |
⊢ ( 𝑗 = 𝑘 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
355 |
346 354
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
356 |
355
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
357 |
345 356
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
358 |
357
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
359 |
25 41 57 76 252 358 3
|
findcard2d |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
360 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
361 |
5 360
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
362 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
363 |
361 362
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
364 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
365 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ) |
366 |
365
|
sumeq1d |
⊢ ( 𝑘 = 𝑁 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
367 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑁 ) ) |
368 |
367
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
369 |
368
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
370 |
369
|
sumeq2sdv |
⊢ ( 𝑘 = 𝑁 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
371 |
366 370
|
eqtrd |
⊢ ( 𝑘 = 𝑁 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
372 |
371
|
mpteq2dv |
⊢ ( 𝑘 = 𝑁 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
373 |
364 372
|
eqeq12d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
374 |
373
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
375 |
359 363 374
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
376 |
|
oveq2 |
⊢ ( 𝑠 = 𝑇 → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ) |
377 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑇 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
378 |
376 377
|
syl |
⊢ ( 𝑠 = 𝑇 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
379 |
|
sumeq1 |
⊢ ( 𝑠 = 𝑇 → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) ) |
380 |
379
|
eqeq1d |
⊢ ( 𝑠 = 𝑇 → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
381 |
380
|
rabbidv |
⊢ ( 𝑠 = 𝑇 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
382 |
378 381
|
eqtrd |
⊢ ( 𝑠 = 𝑇 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
383 |
382
|
mpteq2dv |
⊢ ( 𝑠 = 𝑇 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
384 |
|
pwidg |
⊢ ( 𝑇 ∈ Fin → 𝑇 ∈ 𝒫 𝑇 ) |
385 |
3 384
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ 𝒫 𝑇 ) |
386 |
142
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
387 |
386
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
388 |
8 383 385 387
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
389 |
9
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
390 |
388 389
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = 𝐶 ) |
391 |
390
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) = ( 𝐶 ‘ 𝑁 ) ) |
392 |
391
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
393 |
392
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
394 |
375 393
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |